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PREFACE.

Tre work now republished® is of that
emall number which mark an epoch in '
the history of science. In this short-
treatise is found the germ of the true’
theory of so-called fmaginary quanti--
ties. Although generally attributed to
the genius of Gauss, this theory was not
pointed out by that great geometer until
twenty-five years after the publication of -
Arga.nd’s work,t and it had been mean-
" while re-discovered several times in both
France and England. On this point we
. can cite no testimony more convinding
than that of a German geometer, whose-

_ recent “death is deplored by science.

. Bays Hankel ,{ “the- first to show how to

. represent the imaginary forms A 4 B¢ by

pomts in a plane, and to give rules for

. 18t edition, Paris. Duminil-Lesueur, 1808,

‘t Anvelge rur ‘‘ Theoria residvorum bguadraticum .
Oommentalio secunda,” 1831 (Gauss Werke, t. IT, p. 174).

3 Vorlesungen uber die complexen Zahlen und thre func-
tione. , (Leipzig, 1887, p. &). A
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their geometric addition and multiplica-
tion, was Argand, who established his
theory in a pamphlet printed in Paris, in
1806, under the- title ‘Essai sur une
maniére de representer les quantités im-
aginaires dans les constructions géomét-
riques.” . Yet this paper did not meet
with public recognition until after the
insertion of a nate by J. F. Francais, in
the Annales de Gergonne, Vol. IV, 1813,
1814, p. 61, in which, st the same time,
Argand* also published two articles,
In these articles the subject was 80

exhaustively treated that nothing new

has since been found to add to them,

and, unless some older work is’ dis-

covered, Argand must be regarded as
the true founder of the theory of com-
plex quantmes in & plane.

“oL L. "In 1831, Gausst devel
oped the same ides, as is well known;
but, however great his merit, as bring-
ing this.ides to the mnotice of science, it

is none the less impossible to elaim for

him priority.”

*Vol. IV, p. 138, and Vol. V p 1!7'
+Works, Vol. 11, p. 174.

"

. From this accurate historicl'zl résumé,

it is seen that the work of Argand.
remained almost wholly unknown, hav-
ing been distributed but to few persons,:
and not put in general circulation.
Seven years later, Francais, an artillery
officer at Metz, sent to the Editor of the
Annales the outline of a theory whose

* germ he had found in a letter written to

his brother by Legendre, the latter hav-
ing obtained it from .another author-
whose name he did not give. This
article came to the notice of .Arg&nd,
who immediately wroté Gergonne & note
in which he made himself known as thie.
author of the work cited in Legendre's:
letter, and in which he gave quite-a’
complete summary of -his pamphlet.- .of-
1806. This double publication gave rise-
to a-discussion in the: Annalés,: in which:
Francais, Gergonne -and Servois took
p&rt closing -with ‘o -remarkable article,
in which Argand expla.med more -satis-
factorily certein points-in his theory, .
eéspecially his demonstration- of the

“fundamental proposition of the theory:
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of algebraic equations, the simplest. yet
given, which subgequently Cauchy enly-
reprodpeed, inig purely analytic, but less-
striking, form. . These - various articles, -
the natural sequel to Argand's pamphlet,
published, iy’ .a,Bequeil now very. rare,
are collected in an..appendix:to. .this.

volume. Notwithstanding their .appear-
ance . in a. scienfific. journal so. well
known, the views.of Axgand were wholly
unnoticed, &s appesra; from: the fact. that
twenty-two yeans after the publication of
the essay they werp re-stated both. by
Warren, in England, and. Mourey, in
France, apparently. without any knowl-

edge on their. part of .their earlier expo-.

sition. Nor did they themselves succeed

in attracting.the attention.of geometers,.

although the regearches of Mourey were
given.in the ZLecons d.4lgébre by Leféb-
ure .de. Fourey,. angd. two. articles, sup-

Plementary, ta his fizst work, bad: been.

publighed by Waxxen,in the Philosophi-

cal Transactions.. Only after Gauss. had'

spoken, were these views taken up in
Germany. They soon became familiar

3
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to. English geometers, and were the
starting: point of Hamifton’s theory of
Quaternions, -while; ‘fn- Italy, Béllavitis
made them the basis‘of his Méthode' des
Eguipollences.® - In. Prance;* Argand’s
theory was worked overswithout material /
addition, till-its: edeption by Cauechy,
who - -expounded ‘ibt'-in hisExercices
d’ Analyse et deo Physique mathémati- °
que,t - with .a-complete historical notice -
rendering Argand full justice.

In the work of:this' modest savant of -
Geneva' is to -be found- the -origin "of
many subseguent - rekeayches, '‘somé “of '
which ' have-: thrown * unexpected light
both upon: the - mystery which -has' 46 °
long enveloped-negntive and’ imegingry
quantities; 88 well a8 upon'the general
theory of functions; by affording a defin-
ite geometricat interpretation. ‘ *Others;
a8 yet of less-importirte; bat perbaps .
destined!in' the futuré to'remder-gréat -
serviees; have resulted in:the creation of

« Beposttion ‘dé th " Methdae s Equipolientes ~ Girtato
Bellavitis, Trduit doLitalien par-O. A: Laisant, Paris.

Gauthier-Villars, 1874,
+Vol. IV, p. 157

“ak*
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. new methods in analyticel geometry,
among which may be cited those of

Mobius, Bellavitis, Hamilton and Grass- -

man..- Unable to avoid the constant
presence of negative and imaginary
quantities in the results of analysis, or
to swrrender the important advantages
following the use of their corresponding
symbols, mathematicians. had for a long
time been content to employ them with-
out fully accounting for their true
nature, regarding them as signs of oper-
ations which in themselves had ro mean-
ing, yet which, under certain rules, led
surely and directly, though in an obscure
and mysterious manner, to results which
other quantities would not have yielded,
except indeed by long and difficult pro-
cesses, involving the discussion of an
indefinite number of particular cases.
It is at last seen, however, that the
impossibility of negative quantities is, in
genersl, only apparent, and results from
8 generalization of the idea of quantity

without any modification of the -corre--
ponding analytical operations. An’

ik

analogous case is found in the very ele-
ments of arithmetic, which, however, has’
given rise to no difficulty. The opera-
tion of division cannot be' exactly per-
formed if we are restricted to whole
numbers. But if unity be divided into
equal fractions, the division is always:
possible, and the result becomes. a
complex expression, consisting of two
numbers, one indicating multiplication,
the other division. Hence arises a new
class of quantities, fractions, subject to
operations to which are applied the same
names given to the operations on inte-
gers, which they include as particular
cases. But the definitions of multipli-
cation and division have been therefore
carefully modified, to render them appli-
cable to the new quantities. By pro-
ceeding in an analogous manner in addi-
tion and subtraction, the meaning of a
negative quantity has been definitely
fixed. - So long as the problem is re-
stricted to the simple determination of
magnitude, the subtrection «—¥é is" im-

possible and absurd, if 4>a. But if,
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ingtead - of & series.of magmitudes, ex-
tending from zeve in a .single. direation,
we:are contexmed.with.a series extending
indefinitely. in.-two.opposite . diveetions,
and/ if .we. call - addition an. operation
which consists in starting from a: eertain
quentity in-one of .these ‘two.- directions,
and. subtragtion . -an inverse. operation,
consisting.of motion in the opposite .di-
rection,~thus  defined;. both: operations
will be always possible and: their results
a8 real as thoae of & pul ely anthmetlcsl
addition. .

To repxesent these results ing sxmple
menner, we. are led: to write -before -the
symbol, representing any quantity, a sign
indicating the:direction in which. it is
estimated. Such is-the true mea.nmg of
negative quantities. - .

This extension of the meaning of. quun~
tity and of -the operations to which it is
subjected, may:be. carried still further. .
But this further representation of gquan-
tity mekes-the: use of-a..geometricad @o-
tation, which, within-the limits of jta
application, is the most luminous and

- x

complete of all, admost indispensable.
Suppose the quantity sought.be subject:
tortwo: canses.of variation; and:to depend
upon’two magnitudes which can;berrep-
resented by any tworeo-oidinates fixing
the ‘position.of arpoiut in a- plame. 1. The
operation of -extracting:the -squareroot,

" for example; in the preceding case of.a.

single variable: co-ordinate, was possible
onlywhen the:quantity:so opersted upon
was of the kind- denoted by.plus unity.
So long:as A/a- corresponds:ito: the:.con-
struction of a mean proportional:be-
tween a and +1;4/—¥" indicates.an im-
possible operation, ' and no. point of the:
locus.-corresponding to & single variable
co-ordinate can' represent - this -result.
But if both co-ordinstes are made. varia-
ple and the restriction to a..single.line
be abandoned, and the definition of the:
extraction of ‘the square ‘root be. modi-
fied, the case is -otherwise: - The  quanti-
ties considered donot-then:depend mpon
a single magnitude; but-on two, and are
for this reason called complex quandities.-
In operating on such & quentity, both of
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the quantities on which it depends are
affected, exactly -as in- operating on a
fraction we affeot its two terms. Thanks
tf.)\ther introduction of both new quanti-
ties and -new definitions of operations,
A/ —¥* vo longer indicates an impossible
operation, and the term imaginary is no
more applicable to such a result than to
fractions or negative quantities. Such
is the fundamental and immediate con-
sequence of Argand’s conception. Sym-

bols of the form @+ 54/ =1, to which all

analytical results have been reduced, are
no longer either impossible or incompre-
hensible; they are a system of two
numbers ¢ and b, which are combined

with each other just as are the co-ordi-.
nates of a point in a plane. Thence-

forth, the brilliant results of the power-
ful analysis of Cauchy were to be
trenslated into a geometrical language,
speaking to the .eyes; and the discussion
of formule became a simple problem of
the Geometry of .Position;. subsequently
completely solved by Riemann. The
theory of complex quantities which, by
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the discoveries of Cauchy, had become
the basis of the theory of functions, thus
received at the same time a new.confirm-
ation, placing them beyond all the doubt
and objections to which they had been
before exposed. Suck are the eminhent
services rendered by the discovery of
Argand both to Analysis and the Philos-
ophy of Mathematics.

But geometry, as well as analysis,
though to a less degree, has profited by
the introduction of these conceptions,
founded on the discovery of a new bond
between these two branches of the sci-
ence. In Argand's work are found the
beginnings of a very general method of
plane - analytical geometry, developed
later by M. Bellavitis with great sue-
cess; furnishing a uniform process for
the discussion both of problems in ele-
mentary geometry and the more ad-
vanced theory of .curves. The advant--
age of this. method consists in the
introduction into the calculations of the
points themselves instead of -their co-
ordinates, and the consequent choice at
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. the last moment of the most convenient .
system of reference. .Argand was less.
successful in - his. attempts to extend his
method of representing points to space
of three-dimensions: Indeed, this prob-
lem invalved. difficulties: far greater than |
those which he had just overcome, and
not till after thirty years did Hamllton
at last surmount them.

- We should have taken great pleasure '

in giving our readers some information
relative to the author himself of this im- .
portant tract. With this in view, we
applied to M. R. Wolf, as- more thor-.
oughly acquainted with the  history of .
science in Switzerland than any one else, .
and to whom we are indebted -for a bio-
graphical collection, as remarkable.for its .
profound learning as for its. attractive
style. M. Wolf at once kindly caused
inquiries to be made in Geneva, Argand's
native city... Unfostunately, the informa- .-
tion he obtained, through Prof.. Alfred -
Gautier, is contained in a few brief lines
here cited: “Ireadily found the registry -
of birth, on July 224, 1768, of Jean-
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Robert ‘Argand, son of Jacques Argand-
and Eve Oanac, very probably-the author.
of ‘the miathematical ‘paper ‘in question.
Ilearn from one who Jmew his family
that hewas for & long time s book-keeper -
at Paris, and I presume that he :died
there. He was not a nearrelation of
Aimé Argand, * and pernaps not of the
same family. He had one son-who also
resided in Paris.” . 'Wolf subse-
quently learned that Argand also had a.
daughter named Jeanne-Francoise-Dor- -
othée-Marie-Elizabeth, married. to Félix
Bousquet, with whom-she went to Stutt-
gart, where he had obtained some unim-
portant: sltua.tlon “If we add to this
that, about 1818, Argand lived at Pavis,
rue de Gentilly, No. 12, as indicated in
his own handwriting on the cover of -the
copy sent to Gergonne, we shall have
stated all we have been able to learn of
this original man, whose modest life will
remain unknown, but whose services to

* A friend and associate of the brothers. Montgol™
fler, who invented the lamD of that nume. (1755-1808.)
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science Hamilton and Cauchy have
deemed worthy the gratitude of pos-
terity.

J. HOUEL.

IMAGINARY QUANTITIES !

THEIR

Geometrical Interpretation.*

1. Let @ be any arbitrary quantity. If
to this quantity another equal to it be
added, we may express the resulting sum
by 2a. If we repeat this operation, the
result will be 3a, and so on. We thus
obtain the series a, 2a, 3a, 4a, . . . . .
each term of which is derived from ‘the
preceding by the same operation, capa-
ble of indefinite repetition, Let us con-
sider the series in reverse order, namely,

. . 4a, 3a, 2a, a. As before,
each term of this new series may be re-
garded as derived from the preceding by
an operation which is the reverse of the

* Essay on'the Geometrical Interpretation of Imag-
inary Quantities, by R. Argand. Second edition with
preface by M. J.Hotlel, and extracts from the Annales
de Gergonne, Paris, Gauthier-Villars, 1874. From the
French, by Prot. A. S. Hardy, Dartmouth College.
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former; yet, between these series there
is this difference: the first may be in-
definitely extended, but the second can-
not. After the. term @, we should ob-
tain 0, but beyond this point the quantity
a must be of such a nature as to permit
our operating on zero as we did on the
other terms . 4a, 3a, 2a, a
But this is not always possible. If, for
example, @ represents a material weight,
a8 8 gram, the series . . . ., 4a, 3a,
2a, a, 0, cannot be extended beyond 0; for
while we may take 1 gram from 3, 2 or 1
gram, we cannot take it from 0. Hence
the Yerms following zero exist only in
the imagination ; they may, therefore, be
called imaginary. But instead of a se-
ries of weights, let us consider them as
acting in & pan A of a balance containing
weights in the other pan also; and for
the purpose of illustration, let us sup-
pose the distance passed over by the
arms of the balance is proportional to
the weight added or withdrawn, whiel:
indeed would be the case if a spring were
adjusted to the axis. If the addition of

19

the weight n to the pan A moves the ex-
tremity of the arm A a distance ', the
addition of the weights 2n, 3n, 4n,
., will cause this same extremity to
move over the distances 2n’', 3n/, 4n/,
., which may be taken as meas-
ures of the weight in the pan A: this
weight is zero when the pans are bal-
anced. By placing the weights =, 2n,
8n . . . ., in the pan A, we may
obtain the results »’, 2n' 32’ . . . . .
or, by starting with 8n' and withdrawing
the weights, the results 22/, ', 0. But
these results may be reached not only
by taking weights out of the pan A, but
also by adding them to the pan B. Now
the addition of weights to the pan B
can be continued indefinitely ; and in so
doing we shall obtain results expressed
by—n',—2n',—8n', . . . ., and these
terms, called negative, will express quan-
tities as real as-did the-positive ones.
‘We, therefore, see that when two terms,
numerically- equal, have opposite signs,
a8.8n/,—3n’, they designate the different
positions of the balance arms, such that
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the extremity indicating the weight is in
both cases equally distant from the
point 0. This distance may be consid-
ered apart from direction, and be then
called absolute.

Let us consider the origin of negative
quantities in a case of another kind. If
in counting & sum of money we adopt
the franc piece as unity, we may operate
successively by subtraction on this sum,
and render it zero by teking away a cer-
tain number of francs. At this point
the operation becomes impracticable,
and, consequently,—1 franc,—2 francs,

. are imaginary quantities.
Take now the nominal franc as unity,
for the purpose of estimating a fortune
made up of credit and debit. What we
call & diminution of this fortune mlght
take place either by a decrease in the
number of francs on the eredit side, or
by an incresse in the number on the
debit side, and by continuing either pro-
cess we should have a negative fortune
of -100 francs,—200 francs, . . .
Such expressions signify that the num-

21

ber of francs of debt, considered ab-
stractly, exceed by 100, 200, those of
credit. Thus—100 francs,—200 francs,

., which in the former case can
express only imaginary quantities, here
represent quantities as real as those de-
noted by positive expressions.

2. These ideas are very simple ; yet it
is not so easy, as it at first seems, to set
them forth clearly, and to give them the
generality which their application re-
quires. Moreover, the difficulty of the
subject will not be questioned if we re-
member that the exact sciences had been
cultivated for many centuries, and had
made great progress before eithe? a true
conception of negative quantities was
reached or a general method for their
use had been devised. Moreover, it was
not our intention to endeavor to state
these principles more rigorously or move
clearly than they are to be found in the
works which deal with this subject ; but
gimply to make two remarks on negative
quantities. First, that whether a nega~
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tive quantity is real or imaginary,* de-
pends upon the kind of magnitude meas-
ured; and, second, when we compare
two quantities which are of a.kind yield-
ing negative values, the idea involved in
their ratio is complex, including, 1° a
relation dependent on number, consid-
ered absolutely ; 2° a relation of direc-
tion, or of the sense in which they are
estimated, a relation either of identity or
opposition.

3. If now, setting aside the ratio of
absolute magnitude, we consider the dif-
ferent possible relations of direction, we
shall find them reducible to those ex-
pressed in the two following propor-
tions : .

+1: +17:—-1; —1,
+1: -1::-1: +1.

* The sense in which these words are used is suffi-
olently determined by what precedes: the extension
bere given to their ordinary meaning seems permissi-
ble, and it inoreover not wholly new. In optics, what

. 18 called the imaginary foous, as distinguished from
the real, is the point of intersection of rays which
have no existence, in a physical sense, and which can
be consldered, In some 8ort, as negative rays.

|
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Taken directly and by inversion, these
proportions show that the signs of the
means are alike or different when those
of the extremes are so. Now let it be

required to find the geometrical mean
between two quantities of different signs,
that is, to find the value of x in the pro-

portion
+1lia iz —1.

Here we encounter a difficulty, as wl}en
we wished to continue the decreasing
arithmetical progression beyond zero, .for
2 cannot be made equal to any quantity,
either positive or negative; t?ut, as be-
fore, the quantity which was imaginary,
when applied to certain magnitudes,
became real when to the idea of absolute
number we added that of direction, may
it not be possible to treat this quantity,
which is regarded imuginary, because we
cannot assign it a place in the‘ scale.of
positive and negative quantities, w1t'h
the same success? On reflection this
has seemed possible, provided we can
devise a kind of quantity to which we
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may apply the idea of direction, so that

having chosen two opposite directions,
one for positive and one for negative
values, there shall exist a third—such that
the positive direction shall stand in the
same relation to it that the latter does
to the negative.

4. If now we assume a fixed point K
(Fig. 1) and the line KA be taken as.

Fig..

positive unity, and we also regard its:
direction, from K to A, and write KA
to distinguish it from the line KA as.
simply an absolute distance, negative

25

unity will be KI, the vinculum having
the same meaning as before, and the
condition to be satisfied will be met by
KE, perpendicular to the above and wii:,h
& direction from K to E, expressed in
like manner by KE. For the direction
of KA is to that of KE as is the latter
to that of KI. Moreover we see that
this same condition is equally met by
KN, as well as by KE, these two last
quantities being related to each other as
+1and —1. They are, therefore, what
is ordinarily expressed by +4/—1, and
—4/=1. In an analogous manner we
may insert other mean proportion.als be-
tween the quantities just considered.
Thus to construct the mean proportional
between KA and KE, the line CKL must
be drawn so as to bisect the angle AKE,
and the required mean will be KC or
KL So the line GKP gives in like
manner the means between KE and K1,
or between KA and KN.  We shall
obtain in the same way KB, KD, KF,
KH, KJ, KM, KO, KQ, as means be-
tween KA and KC, KC and KE . .
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and so on. Similarly we might insert &
greater number of mean proportionals
betwéen two given quantities, and the
number of constructions involved in the
solution would be equal to the number
of ratios in the required series. Thus,
for example, to construct two means,
KP, KQ, between KA and KB, we
should have the three ratios KA : KP:®
KP: KQ::KQ: KB, and necessarily,
angle AKP=angle PKQ=angle QKB,
the vinculum indicating that these angles
are similarly situated with respect to
the bases AK, PK, QK. Now this may
be effected in three ways, namely, by
trisecting 1° the angle AKB; 2° the
angle AKB increased by 360°; 3° the
angle AKB increased by twice 360°, giv-
ing the three comstructions of Fig. 2,
2 bis, 2 ter.*

) * The principle on v»;'hlch these constructlbns reﬂ.t
stated generally, is that the ratio of two radii l\P KQ,
making an angle QKP, depends on this angle when
these radii are considered as drawn in a certain direc-
tion. and that this ratio e the same as that of two
other radii KR, K8, making the same angle: but all

though this principle {8, in & way, an extension of that
onwhich the geometrical ratio of a positive and nega-

A

P —) Fig.2.bis.

B\\

. __a Fig.2.ter,

5. Observe, further, that the relations
]ust estabhshed between the quantmes

tlve line was establlshed it is here only an hypothesn
whose legitimacy must be proved, and whose counse-
quences, jlit then, are to be independently confirmed.
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XA, KB, KC, . do not
require that the directions which these
quantities fundamentally involve should
be estimated from a single point K; but
that these relations are equally true for
every such expression as KA, indicating
an absolute distance KA and taken in
the same direction, as KA/, K" A",

Kl//.&fl/, BK, (Fig. 3). FOI’;
! 7’
X A Fig.3.
—_— 3
0" ’”
K A
B R —)
"t ror
8 K K A A

following with respect to this new (uan-
tity the same reasonings as before, we
see that if KA, K'A", K'A", Co L,
are each positive unity, AK, A" K, A"K",
are negative unities; that the mean pro-
portional between +1 and —1 can be
expressed by any line whatever, equal in
length to the above and perpendicular
to them in direction, and taken at pleas-
ure in either of its two directions. and
80 on. To make this clear, consider a
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particular case as, for example, a given
force assumed as unity and represented

by KA, acting parallel to KA in the

direction from X to A, its point of appli-
cation being arbitrary; this unit force
may be expressed by a line parallel to
‘KA, with any point as an origin. The
negative unit would be an equal force
with a parallel action line, but acting
from A towards K, and could likewise be
represented by a line drawn from any
point parallel to the former one, but in
an opposite direction. All that is neces-
sary, then, to the application of the
principles already developed regarding
radii is that the qualities, indicated by
plus and minus, which we attribute to a
certain quantity, should depend upon
opposite directions between which there
exists a meun; and that the relations -
between all lines which will represent
such a quantity be then conceived us the

same which existed between the radii.

6. From these reflections it follows
‘that we may generalize the _meaﬂing_(_)f
€xpressions of the form AB, CD, KP,
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, every such one repre-
sentlng a line of a certain length, par-
allel to a certain direction, the latter
taken definitely in one of the two oppo
site senses which this direction presents,
with any point as an origin; these lines
themselves being capable of represent-
ing magnitudes of another kind. As
they are to be the subject of the follow-
ing mvestlgatlon it is proper to give
‘them some specm.l designation. They
will be called lines having direction, or
simply, directed lines.* They will be
thus distinguished from absolute lines,
whose length only is considered without
regard to direction.t

7. Applying the terms of common

[*The directed lines of Argand are, of course, Hum-
ilton’s vectors. und the above principle is simply a
statement of the fundamental conception of a vector,
i. ¢. that all quantities having direction as well as
magnitude are vectors, and that vectors are not
changed by translation without rotation.—TRrANs. 1

t The expression ines having direction is only an ab-
breviation of lnes considered 1with reference to their
direction. This remark will show that we do not pre-
tend to create a new nomenclature, but, by this de-
nomination, hoth to avoid confusion and securs
brevity.
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usage to the different varieties of dircet
ed lines which arise in connection with &
Primitive unit KA, it is seen, that every
line parallel to the primitive direction is
expressed by a real number, that those
perpendicular to it are expressed by im-
aginaries of the form Faa/—1, and,
finally, that those having other direc-
tions are of the form*atda/—1,
and are composed of a real and imagi-
nary part. But these lines are quanti-
ties quite as real as the positive unit;
they are derived from it by the associa-
tion of the idea of direction with that
of magnitude, and are in this respect
like the negative line, which has no imag-
Inary gignification. The terms real and
imaginary do not therefore accord with
the above exposition. It is needless to
remark that the expressions dmpossible
and absurd, sometimes met with, are
still less appropriate. The use of these
terms in the exact sciences in any other
Sense than that of not true is perhaps
Surpriging.*

* *There was a time, when led by the very nature of
case to admit negative values in the discussion ¢t
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An absurd quantity would' be one
whose existence involved the truth of a
false proposition ; as, for example, the
quantity z, satisfying at once = 2, 2=38,
whence 2=3. The admission of such a
quantity into the caleulus would entail
consequences as contradictory as 2=3;
but the results obtained from the use of
the so-called imaginaries are in all re-
spects conformable to those derived
from reasonings in which only real
quantities appear. We might thus fore-
see the impropriety of a nomenclature
which classifies truly absurd quantities
and the even roots of negative quanti-
ties togethdr, and it. was a CONSClOUSNERS
of this impropriety which first gave rise
to the ideas developed in this essay. It
Is thus that we are led to a new nomen-
clature.t
;ﬁétl'act quuntitie;; _.g;(.)n;(;t-em. huﬂng al.)"ﬁar;n-i)-y
some difficulty in imagining that less rhan nothing

could be anything, applied to such values the term
¥rygses. The use of this word, in its original vicious

sense, ceased when the conception under which it

arose was rectitied.

t It is amost needless to observe thut we refer only
to the confusion which arlses from the terms, and that
a corresponding confusion of idens is not implied.
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It is to be observed that while there
exists an infinite variety of directed
lines, practically they are all Leferlid,
as will be shortly shown, to KA, KG,
KB, KD, the position unit being KA
the negative KC and the means KB and
KD (Fig. 4).

Fig. 4,
2}

Itis, furthermore, convenient to classify
any two opposite directions under one
head, to which we shall_app}y ﬁhe term
‘order. The primitive KA with its nega-
tive KC we shall designate as the prime
order, and the means KB and KD as the
medial order. “We shall speak of @
prime - quantity or medial qz.cantzty.
when we refer to one of & prime or
medial order, respectively.  These



34

terms are derived from the mode of
generation of these quantities, and from
the conception under which they are
regarded real. We might apply the
general term intermedials to all others
which it is not necessary to designate
specially.* :

8. In accordance with what precedes,
we may also modify the language of
so-called émaginaries in such a way as
to render this part of the subject more

simple. In writing +«4/—Tor-a4/—1,
we indicate explicitly the way in which
the quantity is generated, which in cer-
tain cases may be useful: but ordinarily
we leave the mode of generation out of
consideration, and 4/ =1 is only a par-

*It has heen already remarked that the relations
“said to exist betwwen lines, when we take thelr di-
rectlons into account, cannot as yet be regarded other
than hypothetical. 1t is, therefore, very far from our
purpose to propose the substitution of the nomencla-
ture above described for that commonly employed ;
but to make use of it only because, in general, it is
desirable to avoid the employment of terms whose
real meaning is at varlance with the ideas we wish to
express, even when we are concerned with an
hypothesis. -

- 6Xpresses.
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ticular kind of unit to which the number
@ is referred. It is, therefore, not abso-
lutely essential to keep the mode of gen-
eration in view. Again, the expression
a4/=1 shows 4/—1 to be a multiplier
of a; but really 4/—1, in a4/—1, is no
more a factor than is +1 in +a, or —1
in —a. Now we do not write + 1.a,—
1. a, but simply + @, — @, and the sign
which precedes « itself indicates
what kind of a unit this number
We may then apply a
similar method to imaginary quanti-

-ties, writing for example ~a and ~A-a

instead of +a4/—1 and —aa/—1, the
signs ~ and ~ being reciprocally posi-
tive and negative. To multiply these
signs, we observe that either multiplied
by itself gives —, and, consequently,
multiplied by each other they give +.
Moreover, a single rule, applicable to

-any number of factors, may be estab-

lished; let every straight line, horizontal
or vertical, in the signs to be multiplied,

have & value 2, and every curved one a
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value 1; we shall have for the four signs
- the following values: '
~=1, —=2, +=8, + =4.

Then take the sum of the values of all
the factors and subtract as many times 4
a8 is necessary to make the remainder
.one of the numbers 1, 2, 8, 4; this re-
mainder will be the value of the sign of
the product; and 80, for division, sub-
tract the sum of the sign values of the
divisor from that of the dividend, hav-
ing added if necessary a multiple of 4 to
the latter, and the remainder will indi-
cate the sign of the quotient. It is to
be noticed that these operations are
those of multiplication and division by
logarithms; this analogy will be brought
more fully into view.

These new signs would abridge the
notation,* and perhaps render the calcu-
lus of imaginaries more convenient,
errors of sign being sometimes easily

*The quantity m +n Y1 being denoted by m~n, or
by mA4n, the single sign ~, or +, replacing the four
signs +, ¥, —, 1.
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made.* We shall employ them in what
follows, without implying on that ac-
count that they should be adopted.
Doubtless -to every innovation, even &
rational one, there is an intrinsic ob]eqt
tion; but no progress would be made if
they were rejected, for the only reason
that they are conmtrary to usage, and
their trial, at least, is permissible. '

9. We are now to examine the various
ways in which directed lines.ar‘e com-
bined by addition and multiplication,
and to determine the resulting construc-
tions. Suppose, first, that we .ha.ve to
add to the positive prime line KP
(Fig. 5) the line KQ, also a positive

Fig. 8.
- .

* t it be required to multiply —m ¥—¢
by ﬁw%?pﬁleprodmt of the two coefficients is
—mn ; that of the two radicals is —c ¥d; and the final
Product is +mne¥d. In the new notatiffxl_th'e two
tactors are ~m ¥, 40 Ved, or +m¥e,~n¥ed, and by
the rule we at once obtain -+mnc ¥d. This advantage—
{f it be one—would not exist for an experienced oalou(i
lator, who by a simple inspection of the factors wo&lls
Tead the product; but not every one possesses
faculty, .
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prime; the construction would not differ
from that of finding the sum of the
absolute lines KP, KQ; it consists in
laying off the distance PR=KQ on the
mlonﬁtion_gf _EP. We then have
EKP+KQ=KP+PR=KR. To add a
negative prime line QK to another PK,
the construction is the same, but in the
opposite direction, and we should have
PK+(E=PK+RP=RK. In general,
if we are to add two lines of the
sax® direction, AB, AC, we take in
this direction, PQ = AB, QR = AC,
and we have PQ + QR = AB + AC=PR,
If we are to add to the positive line KP
the negative QK, we take a distance
PS=QK in the negative direction from
P, and obtain KP+QK=KS=QP. The
same course is pursued for any other
order. ‘

Now, the principle underlying thege
constructions  is that we regard P, the
final point of KP, as the initial point of
the line to be added, and that we take
respectively. for the initial and fina}
points of the sum, the initial point of
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KP and the final point of the added
line. Applying this same principle to
lines of other orders, we conclude that
K, P, R, being any points whatever, we
always have KP + PR=KR; and as each
of the lines KP, PR may also be the
sum of two lines, as KM +MP, PN + NR,
M and N being arbitrarily chosen, we.
conclude that, in general, A, B; M, N,
O,...... , R, S, T being any points:
whatever, AB=AM+MN+NO+O . . ..
+...+...R+RS+ST+TB. The
points A, B, M, . . . . may coincide or
be so situated that the lines AM, MN,....
coincide, intersect, etc. These circum-
stances are matters of indifference.*

10. Every directed line may thus be
decomposed in an infinite number o
ways. To decompose, for example, the
line KP (Fig. 6) into two, one of an
order KA, the other of an order KB;
draw, through P, PN parallel to BK, and
we have KP=KN-+NP. Or we might

* This rule 18 reached by induction, and what was

said in the note to No. 4, on the geometrical ratio of
directed lines, is here applicable.
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draw PM barallel to KA, and then
KP=KM. +MP; but these two express-
ions are identical, because EM=NP and
EN=MP. As there is no other way to

B~ Fig: 6.

™
4 N A

effect the proposed decomposition, we
cconclude that, if A and A’ are of the
order a, B and B’ of another order 3, and
we have the equation A+B =A’+B/,
then A=A’, B=B"

11. Let us now pass to the multipli-
cation of directed lines, and let us first
construct the product KB x KC (Fig. 7),

Fig.7,

the factors being units, but not prime
units. Constructthe angle CKD=AKB.
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From what was sa.xd in No 4, Note I,
KA x KD= KBXKC but KA— +1,
hence KB x KC = KD. Therefore, to
construct the product of two directed
radii, lay off, from the origin of arcs, the
sum of the arcs corresponding to each
radius, and the extremity of the arc thus
1aid off will determinethe position of the
radius of the product; this, as bettore, is
logarithmic multiplication. It-is un-
necessary to show that this rule applies
to any number of factors. If the factors
are not units, they can be put under the
form m KB, n.KC, . . ., m and n being
coefficients or positive prime lines, and
the product would be (mn ....). (XB.
KC. .. J=(mn...). "KP. Now, 1?he
Product of the pomtlve prime line
(mn .. .) by the radius KP is this very
line, dmwn in the direction of thie
l‘&dlus Division is the inverse of this
operation, and its explanation in detail
is unnecessary.

12. By means of these rules we may
operate on directed lines as on absolute
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ones. We now proceed to some appli-
cations of the principles already laid
down, and we shall first state some im-

mediate consequences which are of most
frequent use.

Fig. 8,

§1. If AB,BC, . .. . » EN (Fig. 8)
are equal arcs, n in number, and we
make KB=w, we shall have KC =,

ﬁ):u', . s KN=un,

3,2. I’f we lay off the arcs below KA, ag
AB, B (O, . » E'N’, we shall
have .
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- ! go- L 'N= 1
KBzg,KC= 11—’""f’KN,= e

§3. Hence
KB . KC . KN on
—_—= U, === N
KB’ KC' KN’

§4. If, on corresponding radii, we take
Kg=Kg, Ky:Ky', K6=Ké6', . . ..,
the distances K8, Ky, K8, . . . being
arbitrary, we obtain
Xg . By =u Ko =u' ...

kg~ Ky K&

§6. If on the radii KA, KM, KN as
bases, similar and equal figures be con-
structed, @, 7 and 7 being homologous
lines, then m = a X KM, n = a x KN,
whence — — —, or m.KN=n.KM.

KN .

§6. MN being any arc of the eircum-
ference, it may at times be convenient
to denote, in general, by K.MN the
directed radius drawn though the ex-
tremity B of the arc AB=MN, A always
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being the origin of arcs. We should
thus have

K.MNXK.PQ=K.(MN +PQ),

, KMN __.
and ——
g =K(MN—PQ).

§7. If lﬁ_has the same direction as PQ,
we bave PQ=PQxKB; for the abso-

lut.;e line PQ may be regarded as positive
prime,.

4 ,|,§8_ If we have the equation +'.PQ=

7 ..MN; ' being unknown directed

radii, and PQ, MN lines of the same
' Fig: 9

d’irection, or absolute lines, it follows that
r’=r", and consequently PQ=MN\
i q y PQ=MN, or
?.3. Now let AB,BC, . . ., . , EN
(Fig. 9) be equal arce, » in number;
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then KN=KB"; but KN=Kv ++N, and
KB=Kf+ pB; hence
Ev+7N=(Kg+ pB)"
Let the arc AB=a, and, therefore,
AN=nq; then Kf=cosa, Kv=cot]na,
BB=~sina, vN=~sinna; and the
above equation becomes
co8 na~sin na=(cos a~sin )"

This theorem, expressed in the ordi-
nary notation by
cosnai'\/:_l sin na= .

(cos a4 4/ =1 sin a)*,

ig a fundamental one in the theory of
circular functions; among its uses is the

. expansion of sinz and cgs x into series.

Developing the binomial, equating
separately the terms of the same order,
and dividing by ~1 the equation be-
tween the medials, we have the expres-
sions for cosna and sinng; then making
na=w, and supposing n to increase and
a to diminish,  remaining constant, we
have, at the limit,

N
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ml ml m.
cosr=1— 4~ ______ "
8 §+t534 334567
ml mb a:7

sing=w—

23t234 5 2.3.4.5.6.7
14. From KN=KB" we have KB=
K_N'l‘, whence
KB+ fB=Xr+ 7N)" =K

)
712(%‘1)(;1‘2)_1_ _
23 Kv» vN'+
1/1
v Rl I
1,1 1
)G-2) (e |

_ Substituting the preceding values of
Kv and #N, and noticing that
‘VN ~gin na
Ky cosna

= ~tan na,
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equating separately the terms of the
same order, multiplying the equation
between the medials by ~i1 =~ n, and

making the same supposition as before,
there results

tan’z tan®z tan'z
3 TT5 77
15. Let (Fig. 10) the arcs AB=ua,

x=tan x—

Fig. 10,

AC=1?, and let CD be taken equal to
AB. Then (No. 11), KD=KBXKC.
But

KD=Kd+ 6D_cos(a+ b)~sin(a+b),
KB=Kg+ ﬁB cosa~sina,
KC=Ky +yC=cosb~sind; hence
cos(a+b)~sin{a+b)
=(cos u~sin a)(cosb~sin §).




48

Expanding the second member and
equating the orders separately, we have

cos (a+b)=cosacosb—sina sinb,
sin (a+b)=cosa sin b +sin a cos .

16. Let AC=qa, AB=0 (Fig. 11); draw

Fig. 1,
coo
8
AE
KA
738 ¢

the chord BC, and the radius KD, bisect-
ing the angle BKC. Make AE=BD=

b
“2 , and draw KE and Ee. Then

Ky+yC— (Kf+/B)=cosa ~ sing —
(cosb ~sin ) =cos a—cos b~ (sin a —
sin b)) =KC—KB=KC + BK = BC = 24C
=[No. 12, §5] 2¢ExKD=

~2sina_b( a+b a+b)’

COB——— ~§in — —
2 3 s
whence
_ _ . a—b . a+d
cos a—cos b= —2sin g N ——,
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- b
sin ¢ —sin b= +2 sina2 b. cosig—-—.

17. Divide the arc AN (Fig. 12) into
n equal parts. The radii KA, XB, KC,
, KN are in geometrical progression,

but the corresponding arcs are in arith-
metical progression, and may therefore

Fig. 12

be taken for the logarithms of these
radii. Put mAN=log KN, m being the
arbitrary modulus; we then have log r KN
=m.AN=mnAB. Making = infinity, so
that the arc’ AB may be regarded as a
right line perpendicular to KA, we have
AB=~AB, or AB =~AB, and log KN
—+mn AB, or log KN=mn. AB; for
since m is arbitrary, we may substitute

m in place ofr{um Now AB=AK+KB
=-—1 + KN 7; hence
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——— 1
log KN=mn (_1 +KN 7[), and, putting
EN=1+z, log 1+z)=mn

3 +
1(1_1)(1_2) }
n\n n .

2.3 +
=m(m_i‘+fi_£‘+...)
2V 3 1 .

18. Let us now divide the two equal
arcs AN, AN’ (Fig. 18) into n equal
parts; draw the tangent nn’ and the
secants Kb, Ke, . . ., Kn; K&, K¢/, ... .,
Kn'

‘We have seen (No 12, 54) that, when
KB=v,

Kb, Ke . “Kn 9
—_— = U, == U, . . .= = y* ",
Ky K¢ K»'
Thus, as before, the quantities
KA Kb Kc Kn
KA Kb Ko~ Ew

are in geometrical progression, and the
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corresponding arcs may be taken for
their logarithms, as for example

n

Fig 3.

K
AN=m log—K—:-Zi, .

Let AN =z, and consequently
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Kn=KA + An=1~tanz,
Kn'=KA + An'=1A-tanz;
then we have at once
1~tan x
x=mlog ——1——
miog 14-tanz’
But we have seen the arc
e=tan o— tan'x tan®x
3 5

g1~ta.nac tan’z
1t4-an® ame——3
tan’x
' 5
Putting ~tana=z, this becomes
1+z 3 L3 T
mlo (— =~( 21242
g l—z) 2+ 3+5+7+...),
or, -di-viding both members by ~1, and
noticing that, m being arbitrary, m may

be substituted for ——ﬁi—,

1+z ] o y
m]°8(—1'_—z)=2+ %+%+%+ ce

19. Resuming the equation
l~tanz

1+4-tanz’

x=mlog
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and making ~tanz=z as before, let us
substitute % for s, or, what is the

game thing, make z=~2z in the first
member. These changes give

142
~2z=mlogT——=log
—% (1+22+4 22" +22"+...)
and

~2nz=mlog(l+2z+22"+22"+. . )
Now make ~2nx=y, and suppose »
to increase and x to decrease without
limit, ¥ remaining constant; 2= ~tana
will then be infinitely small; hence, in
the second member of the development
the terms following 2z may be omitted,
under which supposition the equation
reduces to y=mlog(1l+22)" o
The same supposition gives g=~tanw
=~x, 2ng=~2nT=Y, and, therefore,

22= % We may then write

n

=mlog(1+ <

_ Y n(n-1) g/_’
—mlog(1+n. P W
1]

nn-1)(n-2) ¥y )

153 " nm"
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and, finally, since n=oo,
1.2.3*1.2.3.4"") .
20. Suppose the arc AN (Fig. 14) to

y=mlog (1+y+%+

Fig. 14,

be divided into an infinite number n'of
equal parts, of which AB is the first,
Take AP=4AN, and draw AN, KP and
Pg. We have
AB=AK + KB=—1+ KN

=_1+(KT+E)%=;1+(1+E)¢.

= 1+1+;.AN+ 3 AN?
Ao
n\n 5 n )-AN' .
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1 (. AN' AN’ AN )
f';( 3 t3 4"
— . —— AN* AN* AN
and n.AB = AN —— +-—3 ="
+ . . e

whence 7. AB=~-n. AB=~arc AN, and
AN=2pN=[No. 12, §5] 2¢P X KP

=~2 sin—A—2N— .(cos —A—zN—-rwsin -ég—) s

or, putting the arc 5 =% AN=~-2gina
(cos a~sina), and therefore
AN*=—(2sin a)*(cos 2a~sin 2a),
AN'=--(2sina)*(cos3a~sin3a),
AN‘= + (2sina)*(cos4 a~sinta),
ANCz=~ o o e e e e
Substituting these values in the above
geries, retaining the medial terms only,
since this series is equal to n.AB=~ 2a,
and dividing by ~1, we have
(2sina)’sin 2a
2q=2sina.cosa+—p
_ (2sin a)*’cos 8a (2sin al‘sin4a ...
3
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Since the sum of th i
e prim
be zero, we have prime torms must

0=-2sina.sina+(28L)’°°‘52_a
. . 2
(2sin a)*sin 8z  (2sina)‘cosda
4 T e

an equation which ..
2 sin a. ch may be divided by

21. Divide the circumference (Fig. 15)

Fig. I8,
C

F

in{:o 7 equal parts, AB, BC, . . . GA
7 18 now a finite quantity. We proposé
to find .t.he_sum S of the mth powers of

the radii KA, KB, . . . .. KG.. '
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Let KB= v, whence KC =", KD=
uy ... ,—K_G =un-l, KA = w=1; then

S=14um4eutm4 . . . Ful=D,
and

UMS = U™ 4 UM 4 A UR I U
but unm = (u)m=1m=1;
hence wmS=S, and (w*—1)S=o.

If ym=1, this is an identical equation,
without meaning; but, in this case,

wtm=1, udm=1,.. .; hence S=n. In
all other cases S="o.

If we denote by P/, P/, P""',. ..., Pm
the sum of the first, second, . . - . >
nth powers of given quantities, and by
o, oI, ..., II®™ the sum of

_ the products of the same quantities taken

one and one, two and two, . . . ., 7 and
n, it is well known that
all® =P [Io-H—P" I
+ P IO — L

4 PO-9IT" FPa-d[ L Pe-DII'FP®,
the upper and lower signs corresponding
to the cases in which » is even or odd,
respectively.  The demonstration of
this theorem may be reduced to a
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simple algebraic transformation. If we
apply it to the radii KA, KB, . . . ., KG,
which are » in number, we shall obtain
P'=0, P"=0,P"=0, . ..., Po-1=p
P=5; whence
II'=0, II"=o,. . ..
H("—l)—o nH(")_:}:n
and [IW=xl1=—(—1)n

These properties may also be derived
from the equatlon an—1=o0, whose roots
are KA, KB, , KG.

22. Let us now assume some point
other than the center K (Fig. 16), as V,
and find the product of VA, VB, VG,.

VG.

Since VA=VK + KA, and VB=VE +
KB, . . . . wehave
VAVBYVC . . . VG=

(VK +KA)(VK+KB)

(VK+KG) =VK» 4T VK""-*—

B,

. VKn—2+ TIin=1) VK+ IT (),
Now we have just seen that the coeffi-
cients II, IT"', IT""', . . . , to IT®n~1) gre

~ zero, and that IIm= —( 1)" Hence
VAVBVC...Va= VEr—(—1)»
=(— KV)" ~(=1r=(KVr—1)(—1yn,
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KV FAKU al
To construct KV, lay off AKU equ
to i times AKV. Make KU ='KV*,

whence[KU" = KVn. Therefore
v

VEn-1= =KU—1= =KU- KA

. =KU+AK=AT,
VA.VBVC =(—1)"AT.
and VA.VB.VC... VG=(-1)"
If we consider VA, VB, ... ., VG and
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AU as posmve prime lmes, we may make
VA=+".VA VB_r”VB HVG=r0VG
and AU=p.AU; p, ¢, »" y+ «+y ™ being
directed radii or the roots of umty We
should then have
LM VAVB.VC. . . VG
=(—1)"p.AT,
and (No. 12, § 8), VAVB . ... VG=AT.
For example, let KV=z, KU=z", the
angle AKV=gq, the angle AKU=naq, the

angle AKB—= gg ‘We should then find
AU =a%—2z" cos na+1,
VB?=a*~2z cos (a—- 2”) +1,

7
4

.;:.
+

VC'=a’—2x cos (a 1,

n

[=Z]

VD’=a:’—2:ccos(a —;—t +1

]

VA'=¢ —2xcos(a— 2nﬂ)’) +1
=x’—2¢cosa+1

and, squaring the equation VA, VB .
VG=AU, we shall have

?
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an—2xhcos na+1=

%m —2xcos(a—g—)+1 }
X{w’—-2xcos(a—‘t—:t)+1 }

X{x’—2wcos(a—§nz)+1 %
X oo X(@—2xcosa+1l),

there being n factors in the second
member.

The development of the rational
factors of the first or second degree of
the binomials a”+1, a*—1, is obtained
by making cosna=1 and cosna=0 in
this formula. On this well known fact
it is unnecessary to be more specific.

23. If V (Fig. 17) be on the circumfer-
ence, we have

AU= 2sm 2 ,
VA=2sin %,

VB=2sin (1---—6i ),
7
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VC =2sin (27—:’_-;_)

mi [ U2E_g)

c Fig- 17,

Hence, substituting for% and

sin(’in’f —a ) =sin(nw—a)

for sin a, there results
2gin na=

2n, sin(—g— - a)sin(%—a)sin(ia%z—a)

xrsin{ —(n—_nl—)”-—a }sin(n—:—a.)

~>
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. 4 . 4
Making a_ﬂ—b, we obtain na=-g —nb

and sin na=cos nb. The substitutionjof
these values gives
2 cos nb=2"cos

g("’__'l_)f—b %cos{-(ﬁ—_—g)—z—b }

2n 2n
X €O8 {(n—B)n_b } .. Xco8
2n
%[n—(2n—3)]7t_b }xoos
2n
{[n—(2n—1):]7t }
e et B
2n
24. In Fig. 18, make the arc AB=are
Fig. 18.
8
A
G

AG; then KN=KB + BN and KN--KG
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+GN; whence we obtain, observing
that BN+ GN =0, and that KG=-KB-Y,
2RKN=KB+KB-.
Raising both members of this equa-
tion to the nth power, 2 being a whole
number, it becomes

(2KN)*=KB" + nKBr—2+

3(7—1211—).@n4+...+

nlr 1) RB-nt 4 nKB-42+ KB

Making the arc AB=a, then KN=cos a,
KB=cosa~sin q, and, in general, KBm
=cos ma~sin ma. Substituting these
values in the above equation, and, since
the first member contains no medial
terms, suppressing those of the second
member, we have
(2 cos a)*=cos na+ncos(n—2)a+

n(n2— 1)co:s(n—‘i)az +...+ 7}—(722—_1)

cos(—n+4)a+ncos(—n+2)a
+cos(—na).
Since, in general, cosm=cos(—m), the
terms of the second member may be
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added two and two; but two cases must
be distinguished, according as n is even
or odd. In the first case, the number of
the terms in the second member is odd
and the middle term stands alone; this
term is

n(r=1) (v . {n—(%—l)}

n

1.2.3...—5

n(n—1)... (—;i+1).

n
1.2.3...—2—

In the second case, all the terms are
doubled, and, if we begin the series with
cos na + cos (—na) = 2cosna, the last
term will be

n—1

2n(n—1)(n—2). y gn--(—z——l)%

n—1
1.2.3...——2—

cos [n—(n—1)]a=.
n(n—1)(n—2).. .n+3
2 cos a.
1.2.3... ——

cos{n—n)a=
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In the same way may be found the
value of (2sina@)?. We have NB=NK +
EBNG=NK+KG; but NG=—NB and
KG=KB~1; whence 2NB=KB—KB-1,
and

g Mr=1)
(2NB)*=KB»—n.KB» 24t 5
n(n—

2
nKB-n+2+ KB—"=(~2sin a)".

The upper and lower signs correspond
respectively to the cases in which » is
even or odd. Examine first the former,
(~2sina)® is then of the prime order,
and the medial terms in the development
of the second member may be neglected ;
whence

EB—— ...+~ D g s

* (2sina)"=cosna—ncos(n—2)a+
n{n—1) n(n-1)

2 2
neos(-n 4 4)a-ncos(-n + 2)a + cos(-na).
In the first member we take thejplus

sign when # is of the form 4m, and the
minus sign when = is of the form 4m4-2.
The middle term, which is

cos(n—4)a—...+
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2
)

1.2.3. 351

as in the formula for the cosine, is not
doubled.

In the second case, (~2sin @)" is of a
medial order. Hence the prime terms
of the second member must be dropped,
which gives, after dividing the equations
by ~1,

n(n—1... (_n_ +1)

* (2sina)®=sinna—nsin(n— 2)a+n(" ~1)
n(n—
2

sin(n—4)a—... sin(—n+4)a

+nsin(—n+2)a—sin(—na).

The + and — signs correspond re-
spectively to the cases in which » is of
the form 4m+1 and 4m+3. Here all
the terms are equal two and two; for, in
general, sinm = —sin (—m), and the
number of terms is even. Uniting, there-
fore, as above, the equal terms, the series

reduces to ﬁ;—l terms, the last of which is
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n(n—1) (n—2) ... 7112—3
n—1
L2.3...——
25. Suppose the arc AN divided into
n equal parts AB, BC, . . . ., EN (Fig.

19).

sina.

Draw AN and AB and through their

middle points, » and b, the radii KM,KP.

Then

EB+KC+KD+...+EN=

cos a~sin a + cos 2a~gin 2a 4
co8 3a~sin 3a +... + cos na~

sinna=C~S,

where

. C=cos a+cos 2a +cos 3a +... + o8 nq,

S=-sin a +sin 2a +8in 3a + ... +8in na.
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_ Let KB=1vu, KC=v,
KN=u"; whence

EB+KC+...+KN=u+u"+

... +‘u'*=u”_1 Lu=
u—1
KN—-KA __KN+AK v
KB-KA  KB+AK
AN aN
—_. U= . U
AB 6B
But (No. 12, § 4)
nN—=~sin7—£rfo—M=~sin?—(-l.u§,
2 .2
TR — ~ql _ﬁ BP — ~qi _(l t
bB= sing X KP=~sin g .-
Hence
~sinn?a.u% sin%g a1
O~S= . u= ut
. i . @
~sm—§ .U sm—2—
sinn——a
_ 2 (cosn+1a~sinn+1
T a 2 2 a)-
sm—2-
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Equating the terms of like order, we
have -

sin@ coxs’i-*_—1 a
C= 2 ___2__
sini
2
sinn——a lsinn——-*-1 a
and S= —-—2 2
sinﬁ
2

26. A similar process will lead to the
reduction of
K =cos @+ cos(a+b) +cos(a +2b)
+ ... +cos(a+nbd),
= =sin a+sin(a +b) +sin(a+20)
+ ... +sin(a+nd).

To this end, describe the ares AB=a,
BGC, CD, . .., EN=b (Fig. 20), the latter
being » in number. Make, moreover,
AH=NI=5, and draw BI and AH. Then
if KH=u, KB=v, we have

KC =ovy, KD=ve, ...., __
KN=vu®, Kl=vurti,
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Therefore
K~Z=v4vutve’+... +out=
vrtl—y KI-KB _ KI+BK
u—1 TKH—KA KH+AK

~8in (’”2“11;). K (AB+3BD)

~sin$d. K.JAH
~ein(" 5 1 ) KEE+1BY)
~gingb =

. m+1
sm(T b){cos(a+b—;)~sin(a+%’3) z{’
sin 4b
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or, equating terms of like order,
. (n+1 ) ( bn)
sm( ) b‘ .cos a+-§
sin}é

. 41\ . bn
sin (——2—6) sin (a+ ?)
and 2= . .

sin'4 b

27, What precedes is sufficient to
show that the method here presented
may be employed in frigonometrical re-
searches. It may,also be of some use in
elementary geometry and algebra, as will
now be briefly indicated.

K=

B _Fig. 2L

G

28. Let Fig. 21 be constructed; its
simplicity and analogy, with those al-
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ready made use of, renders its explana-
tion unnecessary. It follows from the
rules of multiplication and addition that
KB x KG=KA? and KB=KN + N-B_,
KG=KN+NG. Hence KA’=(KN + NB)
(RN +NG). Let KA=4, KN=a,NB=
NG=4. Then

W =(a~b)(a-b)=a’+ b’

Fig. 22. M

29, Any directed chord PQ (Fig. 22)is
of the same order and sign as the radius
KR, drawn in the direction of this
chord. Now the angle AKR is equal to

AP+ ;Q'*' id ; for, drawing KM perpen-

dicular to PQ, we have
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arc AR=AP + PM + MR=AP +3PQ +

F=AP+AQ-AP)+ F AP T

The radius KR may therefore be ex-

AP+AQ+7
AFEg3 )
an expression indicating the direction of
the chord PQ. On this expression we
also remark that the chord PQ being
indeterminate, the letters P and Q may
be interchanged, and for QP we should

pressed (No. 12, §6) by K.(

have K_ (AZQ +AP+ 7\
(g
an expression identical with the former;
for AP+ AQ=AQ+AP. We should in-
fer from this that PQ and QP have the
same direction, which is, however, notthe
case, since they are reciprocally positive
and negative. To solve this difficulty
we observe that the designation of an
arc by its two terminal points, as AP,
applies to an infinite number of arcs, as
AP +2n7, n being any integer. In such
expressions, then, as the above, of all
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these arcs that one should be taken
which conforms to the construction fol-
lowed in the establishment of the gen-
eral formula. Suppose the point Q to
move in the direction QRS until it
reaches P, and that, at the same time, P
moving in the same direction, reaches Q.
The chord PQ will then be whatTwas
before the chord QP. The direction of
this chord PQ will still be

- (1_(1’ +5Qﬂ>—

2 b
but, in this last expression, the arc AP
gshould be estimated from A, round the
entire circumference, plus the arc AP
iteelf, so that this expression really dif-
fers from the former by the quantity
27

5 =7 88 it should.

To avoid all ambiguity, it is sufficient
in the general formula
chord PQ having the direction
K_(_AP?:Q ;J;,:) ,
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to consider the arc AQ greater than the
arc AP, following along the circumfer-
ence in either direction from A to P to
determine the arc AP, and then con-
tinuing in the same direction till Q is

reached. Thus for K . (%)

2AP+§Q+"), the
arcs AP and PQ being estimated in the
same direction. In addition to the fore-
going it may be remarked that, if the
chord PQ is divided at N into any two
segments, the part NQ has the same

we might write K . (

o { AP+AQ+7
dlreci;lon as K . (————ﬁQ—”), and
the part NP, which relative to NQ is
negative, has the direction

R (ALEAQET )y (AP+AQ-m)
Hence, remembering that in geﬁeral the’
Rroduct of two lines having the direc-
tions K.FG, K.HI is in the direction of
K.(FG +HI), we conclude that the pro-
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duct NP.NQ will have the direction
K. (AP +AQ)-

30. Take now any four points P,Q,R,S;
remembering that in genera]l MN=-NM,
we may write
PS.QR + ES.PQ = PS.QR+(RQ + QS)
(PS+SQ)=PS.QR + RQPS+RQSQ+
QS.PS + QSSQ = RQ:SQ + QSPS +
0S.5Q=QS(QR +PS+SQ)=QS.PR.

Now, if the points P, Q, R, S are so

gituated that the three products of the
final equation PS.QR+RS.PQ=QSPR
have the same direction, this equation
will be true of absolute lines. This con-
dition will be satisfied if the points in
question are taken in the order P, Q, R,
S, on the circumference, in which case
PQ, QR, RS, PS are the sides of a quad-
rilateral whose diagonals are PR, QS.
In fact, these sides and diagonals being
so many chords of the circle, we may,
by the formula of the preceding article,
form the following table, the origin
of the arcs A being supposed to imme-
diately precede the point P:
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Chords. Directions.
PS K. (M
2
QR (AQrAR:)

RS K,(AR+_‘;S+7_I_)

SR K'(AP+A2R+£)_

and :the.se expressions will be free from
ambiguity, because, on account of the
supposed order in which A,P,Q,R and S
are t.a.ken, these six chords are all taken
in the same direction.

Hence, in virtue of the principle cited
gqligx:e,_the three products PS.QR,RS.PQ,

S.PR have the same direction
that of ’ m"mely’
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K. (AP FAQ+AR+AS+! 27:5

2

Thus, then, for absolute lines, we
have PS.QR=RS.PQ+QS.PR. This
demonstration, far more simple than the
ordinary one founded only on the com-
parison of similar triangles, is here
given only as illustrative of the use of
intermedials, of which little has been
said.

31. In this last article we propose to
show that every polynomial of the form
Xn 4 aXn-14+0X024. .. +fX+gisde-
composable into factors X+a of the
first degree. It is to be mnoticed that
a, b,... g arenot necessarily reals, as
is ordinarily the case.

It is well known that the problem
consists in the proof that a quantity can
always be found which, substituted for
X, will render the polynomial zero, which
latter we make =Y. Denote by Y(p,
Y(pipn the values of Y obtained by
making X=p, X=p+ pi, p and ¢ being
arbitrary numbers and p a directed radius
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or an indeterminate root of unity. W.
then have Y(,) =p" + apn—14 bp"—’)-:- ;
;.Z;f(z{tl;ff(lﬁpi)"*-a (p + piyr-1 +
stpi) tooty=Ypy+ipQ+7p'R
o de. .+» Q R, S being known quan-
3 Pendent on p, n, a, b, c,.
:1111;1 obtained from the developm:ent oi,"
.inﬁnl.);)v]vers of p+pi. If ibe supposed
p itely 'small, the terms containing ¢*
Y, N dlsa.ppe'ar, and we have tsimpl;1
di(p+p,?=Y(p)+ ipQ. Let KP have the
rection of Y, - Assume p so that ¢ Q
1?Illm.ll have the direction PK, that ispof
: i: sta..me o.rder a8 Y(p, but opposite in
ection ; 1t follows that the magnitude
of ¥(p1pn will be less than that of Y,,,:
zlfnnéarly.we muy obtain a new valfl)e
Yo wl;m{dl shall be less than that of
i), and 80 on, a 3
a value of X for whiclild;i::)l.l Y therefore
To .render the demonstration com-
Plete, it must be remarked that the ter
¢0Q may become zero. In this case o
should retain the succeeding term ¢* %e
or, should this disappear, i*0'S ang ,
on. The reasoning remains th’e samseo
b
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because the powers p’, 0% . . . are quan-
tities of the same nature as .

32. The method above explained rests
upon two principles of construction, one
for the multiplication, the other for the
addition of directed lines; and it has
been already observed that inasmuch as
these principles depend upon inductions
which are not securely established, they
cannot, as yet, be considered as other
than hypotheses, whose acceptance or
rejection should depend upon either the
consequences which they entail or a more
rigorous logic.

We might have dwelt more fully upon
the fundamental ideas which lead to
these results. We mighthave indicated,
by some comparisons, how certain points,
in the theories of Algebraand Geometry,
bear upon these principles admitted by
induction, whose truth is established
rather by the exactness of their conse-
quences than by the logic on which they
are founded; but this discussion would
have contributed. nothing essential to
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the foregoing, and we confine ourselves
to proposing the method of directed
lines as an instrument of regearch, whose
use is advantageous in certain cases, be-
cause geometric constructions offer, as
it were, a picture to the eye which facili-
tates purely intellectual operations.
Moreover, it is always possible to trans-
late the demonstrations founded on this
method into ordinary language.

NOTES ON THE

GEOMETRIGAL INTERPRETATION

IMAGINARY QUANTITIES

BY

PROF. A. S. HARDY.



NOTES.

The preceding treatise, by Argand, ap-
peared in the year 1806. In Vol. 1V,
1813-14, of Gergonne's Annales de
Mathematiques, appeared an article en-
titled “ New Principles of the Geometry
of Position and Geometrical Interpreta-
tion of Imaginary Symbols,” by J. F.
Francais, Professor in the Imperial
School of Artillery at Metz, of which the
following is an abstract.

The author began by calling attention
to the distinction between the magni-
tude and position of a line, and’ to the
still incomplete state of the geometry
of position. He proposed the notation
ag, bgy - - - . to represent right
lines whose absolute lengths were a, b,
the subscript Greek letters denoting the
angles made by these lines with any
arbitrary axis of reference. Francais
used the expression “lines given in mag-
nitude and position,” to designate what
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Argand called “ directed right lines.” In
the term ratio he included the relative
positionas well as the relative magnitude,
four directed lines being in proportion
as

[/ P bﬂ: :(‘7 . da,

b d
when =2 and also f—a=d6—y, In

such a proportion, the absolute lengths
are in geometrical, while the angles made
with the axisare in arithmetical progres-
sion; and the homologoue sides of any
two similar complanar figures are in
proportion. In conformity with the
above definition, the proportion

" :bp::b;g H
involves the equations
b ¢
P and f--a=y—gG,

whence pA=3a+y),
or a mean proportional between the
directed lines bisects their included

angle. So for the continued proportion

A, g tey ... il tmy,
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we should have
b_c_ _m
a__ [)— s s = l,

and. . S—a=py—fF=u—A

He then proposed a second notation.
By the former @,=a, and 1,=1; there-
fore 1: 1,.:a: a,, ora, =a.l,; so that
a directed line might also be represented
by the symbol a@.l., @ denoting its
length and 1, its position.

Lines parallel to the axis of reference
drawn from left (right) to right (left)
were distinguished as positive (nega-
tive) ; angles estimated above (below)
the axis from right to left were regarded
positive (negative). This convention, in
connection with the above notation, gave
+1=1, —1=1,,, and therefore
+a=ax(+1)=a.l,

and —a=aXx(—1)=al.,.
And from the known relations
+1=em¥=1, and —1=ez"¥=1,
results
+a=ax(+1)=a.cm-1,

and —a=aX (—-1)=a.ex" V-1,
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He then proceeded to establish four
theorems :

tI 1In the geometry of position, imaginary guan-
l;tzes of the form +a ¥ —1 represent perpendicu-

8 t.o the axis of reference, and, conversely, per-
pendiculars to the azis are tmaginaries of this
Sorm,

Demonstration.—The quantity +a ¥ —1 is a
mean proportional between +a and —a, that is,
between ao an(.i arx ; bence by the definition of
mean proportional is expressed by a .; or,

i— 1
. . . 2
it is perpendicular to the axis and drawn either
ahove or below it; and we have
+aV=1=a ,,and-e¢¥—1=a¢ .
5 )
- Reciprocally, every perpendicular to this axis
is represented, in conformity with the ahove
notation, by @ x and s, therefore, by defini-
tion, a mean proportional between ao and @+,
or })etween +a and —a. It is therefore an im-
aginary of the form +a ¥ —1.
__Cor. 1.—As signs of position, + Y—1is
identical with 1 .
+—
2
Cor. 2.—Moreover, since—1=14nr=c*"¥=T;

— ” 3
we have also + ¥—1=1 ,_,=e*"2 V-1,

2

T L AL A SO

b
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Cor. 3.—So-called imaginary quantities are
quite as real as positive or negative quadtities,
and differ from them only in position, being in
fact perpendicular to them.

M. Francais argued that this theory
of signs was more consistent than the
ordinary one of Cartesian geometry,
where, as abscissas and ordinates, two
kinds of positive and two kinds of neg-
ative quantities were admitted. He con-
tended that having once defined positive
and negative quantities, as laid off paral-
lel to the axis of abscissas, it was illogi-
cal to admit othersnot comprised in the
definition, and that the common theory
was thus faulty in admitting two incom-
patible principles where one was suffi-
cient.

TrEOREM II.—Thesign of position 1la=¢> V"—f_

Demonstration.—Let the semi-circumference
of a unit circle be divided in the direction of
positive arcs into m equal parts, and radii be
drawn to the points of division; these radii
will form a progression both as to magnitude
and position, by definition. The two extremes

being 1o =41, and 1,=—1= *V:T, the means
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1 .
7, 12_,,, ..... Im—1 n, will be
m o om Tm
" 2
Ty ¥— m—ljm
ém 1, cm _1, Ce e 6( m)’V‘L
. 2Ty ’
or, in general, Inp=¢m nw
i ; and
" s 3371— may be

any angle whatever, we havefinally {,— ¢*¥—1.

From this theor i
the following corolfzilll'izg.: Francals drow

1. That by taking the logarithms of
each member of the last equation, ay/—]
=log (1.); showing that, in the geom
etry (?f position, arcs of circles are the;
logamthms of the corresponding radi
being affected with the sign /7 since’
they are perpendicular to the axis of
rfaforenf:e; explaining also the expres
sion, “imaginary arcs of a circle are lo :
anfhms,” and giving a rational inte rf
tation of the symbolic equation e

4
3 vV —1=log (v/—1). )
2. That since 0a=a.l;, we have algo

Ga=a.ea V-1
3. That sincee~T=coga+ sina4/ 1.
—dy

.-

»
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it follows that ¢,==acosa+« sina.4/ —1,
or that to express a directed right line,
we must take the sum of its projections
in two rectangular co-ordinate axes;
each projection being taken with its
proper sign of position.

4. That for apy such lines we may
substitute any number, provided that -
the sum of the projections of the latter
is equal to the sum of the lines . them-
gelves: that is, we may write a., bg,. ...
m, for wg, provided we have

(A) A —a.e? b Y=

X
: fmcosé’;’:acosa+bcos/3
’ ' +....+mcosy,
or (B) { gein&=asina+bsing
+....+msiny,

and conversely.

If the lines da bp 2> ete. form a
closed polygon, (B) will be satisfied, and
hence for any given line may be substi-
tuted a series of others, forming with it
a closed polygon; conversely for a series
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of lines forming an unclosed polygon
may be substituted the closing line.

The application of these remarks to
the theory of the composition and reso-
Iution of forces is evident. On this
point M. Francais briefly says, “This
theory which has always involved some
difficulties is thus reduced to a problem
of the Geometry of Position.”

TueorEM III.—The sign of position 14 may
a .3

also be written 1 27, that is to say la=1 2=,
Demonstration..—1f the unit circle be divided

into m equal parts and the radii be drawn, they

will form a progression whose extremes are

1 2
unity. Hence 12r=1Im, ln=1n,

m m
n

12nr =1 "7‘. Let then 2L’r:a; we shall have
o m

n a on
pe Tl and consequently 1,=12v,

Cor. 1.—It follows from this theorem: 1°
that the above radii denote the m mth roots of
upity; 2°, these roots are all equal, differing
only in their positions; 3°, they are all equally
real, being represented by lines given both in
magnitude and position.
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Cor. 2.—Comparing the last two thoorems;
we obtain at once the well-known values o

these roots, which may be expressed, in gen-

eral, by
—
» 2%"1 R o
1™ =e =c°s'_7n~+ s =,

He then proposes the substitution, f?l‘
+, —and £4/—1, of 1y lim 11;’ in

connection with the general sign lia;
an additional advantage over that al-
ready suggested being that -+ and.—
will indicate addition and subtraction
only, and so have but one meaning.

TarorEM 1V.—All the roots of an equauog
of any degree are real and may be refp'resente
by lines given in magnitude and position.

Demonstration.—It has been shown .that

every equation of any degree whatever f15:;:]1-x
ways decomposable into real fz.act:ors of :
first or second degree, and hence it is suﬁi;:l:;:
to show that the root of an equation 01. e
second degree can be repre‘s?ntcd by m;is
given in magpitude and position. Now 'i) e
roots of an equation of the second degree, be-
ing of the form z=p+ ¥g, can at once lle c;)n-
structed by the foregoing rules ; ff)r, 1° i o%
is positive, ¢ will be the sum or dlﬂiefgncé of
{wo positive or negative quantities, 1aid o
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the axis ; 2°, if ¢ is negative, z will be a right
line drawn from the origin, tlﬁco-ordinates of
whose extremmity are p and . q.

M. Francais concluded his communi-
cation as follows:

Buch is a very brief sketch of the new prio-
ciples on which it geems to me desirable and
necessary to found the geometry of position,
and which I submit to the judgment of geom-
eters. Being in direct conflict with the com-
monly received ideas concerning so-called 1m-
aginary quantities, I expect they will encoun-
ter many objections ; but I dare to think that
their thorough examination will show them to

.be well founded, and that the consequences I
have drawn from them, strangeas at first sight
they may seem, will nevertheless be found in
" barmony with the most rigorous logic. I
ought, moreover, to acknowledge that the
germ of these ideas is not my own. I found
it in a letter to my late brother from M. Legen-
dre, in which this great geometer gave (as
something he himself had derived from
another, and purely as a matter of curiosity)
the substance of my definirions of proportion
and ratio—theorem I. and cor. 8 of theorem
11.; but the latter was a mere suggestion, and
only justified by a few applications. To myself,
therefore, belongs only the credit due 1o the
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manner in which these principles have been
set forth, and their proof, the notation, and the
proposal of the symbol 1+ae. Ihope that the'
publicity thus given to my own result.s may
induce the real author of these conceptl.ons to
make himself known and to publish his owp
researches on this subject.

In the same volume (IV. p. 71-73) of
the annales which contained this paper
from M. Francais, a note was inserted
by the editor, Gergonne, to 'the effect
that two years before (1811) in a letter
he had written to M. de Maiziére on a
communication which the latter had con-
tributed to the first volume, he ?md sug-
gested that “numerical quant:itles were
perhaps improperly classiﬁed in a single
series,jand that, from their very nature,
it seemed as if they should be arranged
in a table of double argument, as fol-

lows:

2427 TT —leav L,
+w_—1,+1+2«/_1,+2+2«/:_1,...

=2+ =14V =LV L
+1+4/—1, +2+4//—1, ...
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c=2 =1, %0, +1, 42, ...
.,_2_«/?1,—1_«/?,—«/?1‘,
+1-V27, 420/ 7, .
...,—2_2v?,—1_2v?1,—2v?1,
+1-2¢/—1, 12247, . ..

So that, like Francais, he proposed that
ql.mntities of the form n 1/ =1 should be
laid off in a direction perpendicular to
that in which the quantity » was meas-
u.red, and that quantities having other
directions should be represented by the
sum of their projections on these two.
I.Ie cites also froma letter of M. de Mai-
ziére the following: “ What I have ad-
vanced on imaginary quantities ig quite
novel, . . . . . and I am sure you have
already recognized its exactness,” and
again: “This will cease to be g Paradox
when I have proved that imaginaries of
the second degree, and therefore of al)
degrefas, 8ré Do more imaginary than
negative quantities or imaginaries of the
first degree, and that ag regards the
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former we are exactly in the same posi-
tion as were the Algebraists of the sev-
enteenth century with respect to the
latter.” M. Gergonne di.:laims any
intention of depriving either Argand or
Francais of the credit due them, but
simply called attention to the fact that,
after all, these conceptions were not so
strange as would seem, since several had
entertained them, and in closing he re-
marks that M. Francais' paper may be
summarized in the following proposi-
tion:

“ When, we seek a determinate but
unknown length which is supposed to
lie in a certain direction along a given
line from & ‘given point, while it really
lies in the opposite direction, we obtain
a negative expression ; and if this length
is not on the line at all, the expression
will appear under an imaginary form.”

M. Francais' paper called forth a
second article from M. Argand, which
appeared in Vol. 1V.,, p. 133-147 of the
Annales, wherein he called attention to
his previous publication, and claims to
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have been the person to whom Legendre
referred in his letter, he having submit-
" ted his first treatise to Legendre's exam-
ination. This second paper is, in the
main, a restatement of the views ad-
vanced in thefirst; butin itheabandoned
the use of the signs~and 4, and returned
to that of £ ~/— 1. He also added
some further remarks, which are inter-
esting as showing how he attempted to
extend his theory to tri-dimensional
space, and of which the following is a
translation:

Let (Fig. 23) KA=+1, KC=-1, KB=+
+¥—1, KD=—¥="1; any other radius KN,
in the same plane, will be of the form p+4-¢ ' —1;
and, conversely, every expression of this form
will denote a directed line of this plane.

Draw now from the center K a perpendicu-
lar KP=KA to the plane. How shall this
directed line be designated? Is it wholly in-
dependent of KA and KB, or can it be referred
analytically to the prime unit KA, as are KB,
KC? Guided by analogy it would seem that,
taking the entire circumference as the unit
angle, a directed radius making an angle o
with KA would be expressed, from the princi-
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ples already laid down, by 1%; but this expres-
sion would be troublesome when a is a fraction,
because it would then have more than one
value. This objection would be met by the
adoption of M. Francais’ notation, 1a; we
should thus have KA=1,, KB=13, KC=1;,
KD=1;. We have considered angles reckoned

from A above and below as positive and nega-
tive. Now, if we apply to the angles the rule
we have adopted for lines, we should be led to
regard imaginary angles as laid off 1o a direc-
tion perpendicular to that which corresponds
to real angles, Suppose the semi-circumfer-
ence ABC to revolve about AC, the point B
describing the circle BPDQ; since we already
have
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angle AKB=+41=2%.(41), o

angle AKD=—}=%.(—1),
we may write angle AKP =3+ =1 =3.1;;
whence we conclude that

KP:I* 1}:1% V'_—I:I*V—lz

This would seem to be the analytical expres-
sion required.

If on the circle BPD we take the point M, so
that BKM =, we shall have, in like manncr,
angle AKM=%cos s+ ¥ "1 sin x), and writing
for brevity cos p+ ¥'—1 sinu=p, KM = 11, =
LA =14 =(4/=1)C0S #+ V=T8N & wipl be the
general expression for all radii perpendicular
to the primitive radius KA.

Let us now seck an expression for BKP.
On the circumference ABC, the angles esti-
mated from B in either direction are positive
and negative, and real, and the plane BKP is
perpendicular to their direction; it would thus
seem that the angle BKP, like AKP,=} 1,
and that this should in like manner be true for
any angle NKP, N being on the circumference
ABCD; but that this conclusion is erroneous is
evident from the fact that when N and C coin
cide, we should have CKP=} ¥—1, whereas
this angle is evidently —AKP=—3}+—1. To
avoid this difficulty, observe that having

#
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adopted a direction for -1, there are an infin-
ity of lines perpendicular to it, among which
one is arbitrarily chosen as that of ¥—1. The
general expression for every unity taken in one
of these directions is, as we have just seen,

L=1¥=(¥=1y —(¥TT)c08 wt Y-1snx

Conceive at the point A, an infinite number
of directions perpendicular to the circumfer-
ence at that point; one of these will be that of
KP; namely that one we have taken to con-
struct the positive imaginary angles 4o ¥ —1;
that is, for this case we have taken p=1=KA.,
So, at C, the direction parallel to KP gave
negative imaginary angles —a +'—1; that is,
we have made p=—1=KB. Hence, with re-
spect to the direction from B parallel to KP,
analogy would lead us to make p= ¥—1=KB.
Thus the expression for BKP will be }( ¥-1)¥=1,

We will not further enlarge on these sugges-
tions, and observe only in closing that the
expressions a, ap, ap,, which designate lines
considered in reference to one, two and three
dimensions, are only the first terms of a series
which can be indefinitely extended.

If the above ideas are admissable, the ques.
tion 8o often raised, as to whether every func-
tion can be reduced to the form p4¢ =1,
would be answered in the negative; and KP=
(#/=1)(¥-7) would effer the simplest example
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of & quantity irreducible to this form, and as
heterogeneous with respect to ¥ =1 as is the
latter with respect to +-1.

It is true therc are demounstrations going to
show that the form (a+b ¥ —1)m+n¥—=1 can
always be reduced to the form p+g¢ =1, but
we may be permitted to remark that those
which make use of series are not conclusive so
long as it is not proved that » and ¢ are finite.
Indeed it often happens in analysis that a
series, which, from its very nature can only be
true for real quantities, assumes an infinite
value, or rather form, when it is made to rep-
resent an imaginary quantity; and in like man-
per it i8 presumable that a series composed of
terms of the form p+¢q ¥ —1 or a, can become
infinite if it is to express a quantity of the
order ap,, . As for those demonstrations which
employ logarithros, they ulso seem somewhat
obscure, because we have as yet no dednite
conceptions of imaginary logarithms. It is
also npecessary to ascertain whether the same
logarithm may not belong at the same time to
several quantities of different orders; a,ap, @y, -

Moreover the several values resulting from the
radicals of the proposed expression is another
source of ambiguity, so that one may succeed
in rigorously reducing (u4-b+ —1)n+n%=1 1o
the form p-}g¢ 4 —1 witbout its being peces-
sarily true that this expression bas no other
values of the order a, irreducible to this form.
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Before this second paper of Argand’s
had come to the notice of Francais, the
latter also had endeavored to extend the
new theory of imaginaries to tri-dimen-
sional space. In the fourth Vol. of Ger-
gonne’s Annales a letter appeared from
Francais, from which the following is an
extract:

According to my previous definition, positive
and negative angles are taken in the sume
plane, which for brevity I shall designate as
the plane 2y. It would then seem natural to
supposc that imaginary angles are situated in
planes perpendicular to «y, and this supposi-
tion would be justitied by analogy alone; but
its legitimacy may bLe shown as follows: the
angle 4/ 4'—1 is a mean proportional, both as
to magoitude and position, between 4 /3 and
—f3; itis therefore situated with respect to the
angle 4/ as is the angle — # with respect; to
it, whbich can only be so lopg as.the plane of
the angle + /54 —1 bisects the angle of the
planes 44 and — 3. Now these planes coin-
cide; therefore the planeof + /5 ¥ —1 is perpen-
dicular to the plane a2y. Conversely, since
every plane perpendicular to «y bisects the
angles between the planes of the positive and
negative angles, every angle @, in such a

\
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plane, may be considered a mean proportional
in magnitude and position between 44 and
- f; hence its value, in respect to both magni-
tude and position, is + /4 ¥ —1.
From the above, and my 2nd and 3d theo-
rems,itfollowsthat 1, y—y=e®¥=DY=T=¢ ="
BY=1
=1 27 :cos(8 ¥ =1)+ ¥—1sin(B ¥=1).
Lambert's hyperbolic sine and cosine are thus
reduced to the theory of circular arcs, Naperian
jogarithms, and roots of unity.
It further follows that
1,.1py=y=es¥=1,8 YHV=1 =ela+8 Y VT
=latpgvm;
=e* V=T [cos(B4=1H ¥1sin (B V1))
—cosacos(ff ¥—1)+ ¥—1 sinacos( ¥ 1)
+¥ 1.V Tsin(a v ).
Whence .
@y gy =0C0SC cos(B ¥ =1+ V=1
a sinacos(B ¥=1)+ ¥—1. ae* ¥V Tsin (B YT,
Hence the projections of a on the three co-
ordinate axes, or rather its three components,
will be
acosacos(f ¥=1), ¥“1l.asinacos(f ¥-1),
a ¥V T.aasin(f ¥ =1).
These, Monsicur, are the results I have
reached ; but I confess 1 am not yet satisfied
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with them. T desire to suppress wholly the
old imaginary notation, as I have done for
geometry of two dimensions; that is, for the
latter I have reduced oblique lines of the form
A+B ¥ —11to that of a., where a denotes the
absolute length of the line, and « the angle it
makes with the axis of reference. In tri-di-
mensjonal geometry, I desire to express the
position of any line by @ap , @ denoting the
absolute length a thelabove angle and A the
angle made by the plane of & with 2y ; but as
yet all my efforts in that direction have proved
unsuccessful. I trust some one more skillful
than myself may succeed in filling up this
gap. At all events, I am confident that the
true method of extending our theory of imag-
inaries to tri-dimensional geometry consists in
the consideration of imaginary angles,

In a postseript to this letter, Francais
acknowledges the receipt of Argand's
memoir, and that to the latter belongs
the credit of the discovery of the geo-
metrical representation of imaginaries.

He then adds:

In starting from the same principle we have
reached different results. I have said above
that I have not succeeded in reducing the ex-
pression for the position of any right line in
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space to the form a A" The reasons for my
failure are these: I attempted to make, from
analogy .
a, =a & V":a(cosA+ 41 sinA) whence
AVY
Y_1)¢
la.A: (ea 1) =

(cosa+ ¥—1sing)®osAT V-1sinA

which, when a=4=, A=4m, gives
m = 1) v
1% .1”” ( v 1) 1,
which agrees with the result of M. Argand.
But, developing the geoeral case, we have

AVl (peAV-1)
e a. .
laAz(e“V—l) =€ V—1=
JfacosA+V=TasinA)¥—1_

oV —T.acosA Y lasinA)¥—1

=[cos(acos A)+ 4 —1sin(ecos A)] x_
[cos( #—1.asinA)+ ¥ —1sin( ¥ —1.asinA)]=
costecosA)cos( ¥ —1.asinA)+ 4 —1
sin(acosA)cos( | ¥ —1.asinA)+
4 T1.¢" ~1-2C088 gin( ¥ 7 asinA),
an expression which, on account of its doubly
transcendental character, would seem inad-
missable. On comparing it with
1a+w ¥ —i=cos”cos( Y1)+ V:—_l_s_inh:os
(A 1)+ ¥ 1.6tV Tsinge ¥ 1)
I rejected it altogether, because the angles a
and A are easily found in terms of ¢ and A by
spherical trigonometry. In fact wshave

=\
oS
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cos A cos( + —1)=cos g, ]
sin 2 cos(u 1'_:_1):sin 1 co8(A v"—j),
sing A —1)=sin ¢ sin(A ¥ —1);
wherce
. cosa
COS/A== . . . -
Y1—cin®asin®A V= 1y
" sinz=. sina COS(A"—I) -
+'1-—sin®asin®(A ¥ —1)
And therefore
lap=[cosa+ ¥—1sinacos(A ¥'—1)] x
sin asin(A ¥ —1 —
{ l+~/“— a——(-—;)_' Y—1 % .
¥1-sin2asiu®(A ¥-1)

From this it seems to me clear that ez cannot
be determined a8 a. was,and that the supposed
analogy between angles and lines does not exist.

You must have remarked, Monsieur, that
M. Argand does not prove my proposition
da=alcosa+ ¥ —1sin a), and that this funda-
mental equality is, with him, simply a suppo-
sition justified only by a few examples.

On this remark M. Gergonne very
justly observes that no demonstration
was needed, inasmuch ag Argand had
defined the sum of directed lines as a
certain composition of motions, “a very
natural extension of the ordinary defini-
tion of Algebra.”
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M. Francais concludes: ‘

I do not quite see why M. Argand (No. 12),
in writing 27=1, should introduce a new unit,
rendering, it seems to me, the rest of his paper
obscure. Finally, I should be loth tn admit
the correctness of his assertion that

(¢ 1/?1—)‘“/:
is jrreducible to the form A+B#¥ =1 In
fact, we have

s ebg(cv_l_elogc~l-log4’ ~1

—glogetinV=I= ,logec enV_l
therefore,

(e V1) V=1 (d10g) Y= 1,—fdn _ ,—~idn

[cos(dlog ¢) 4+ ¥—1 sin{dloge)],
which is certainly of the form A4-B y—1. I,
therefore, think myself correct in regarding
the expression (¢ ¥’ :l)d V:T, which he assigns
to the third dimensfon, as simply a conjecture
open to serious objection.

On Nov. 13th, 1813, M. Servois ad-
dressed a letter to Gergonne, which is
especially interesting as bearing upon
the extension of Argand's theory to space
of three dimensions. He objected first
to Francais’ proof of his first theorem.
This proposition, that a4/ —1 is 8 mean
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proportional in magnitude and position
between + @ and—a, he claimed to con-
sist of two, one of which, viz: that
+ a4/ —1, was a mean proportional as to
position is not evident, and is indeed
precisely what is to be proved. To this
criticism Gergonnereplied that,although
Servdis thinks it evident that aa/—1 is
a mean a8 regards magnitude, between
+ a and —a, it seemed to him difficult
to see how such an expression, which,
withits signs, is anegation of magnitude,
could be a mean between two reals ; that
as regards magnitude, the mean could
only be a ; but, taking position into ac-
count, the mean must also be conceived
under this new aspect, and is for this
very reason a mean in position as well as
magnitude, so that the interpretation of
+ gv/—1 is reduced to the selection of a
line which is situated with reference to
+ aas — a is to it.

Servois objected, secondly, that the
new theory was not only founded merely
on analogy, but was not even justified a
posterior by its applications. Empha-
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sizing Argand’s remark that it consisted
in the use of a special notation, he char-
acterizedit as “a sort of geometric mask,
superadded to analytic forms whose
direct use was more simple and expedi-
tious.” For example, he says :

take Argand’s first application,
where he proposes to develope sin (@ 4»b) and

cos (2 +5). From the general formula ¢ a¥—1
=cosa 4 ¥—1sina, I obtain @+ V=1 _
€08 (@+8)+ ¥ —1sin (a+b), and thence @+ -1

V-1 b =
& V=T (cos a+ +'—1 sm a) (cos b4
¥ 1 sin b, ore @+ —1— (cos a cos b-sin @ sin
84 ¥=1(sin« cos b+ cos a 8in §); equating

these two values of eleh )‘_1 and subsc-

quently the real and imaginary parts separale-
ly, we have cos (a+56j=co0s a cos b—sin a sin b,
sin (@+0)=sin @ cos b + cos asinb. All the
other geometrical applications are easily made
in the same manner. They may be found in
various works, and especially in “* A Purcly
Algebraic Theory of Imaginary Quantitiex,”
by M. Suremain-de-Missery (Paris, 1801). The
single application to algebra (close of Argand's
treatise) seems to me quite unsatisfactory. I
do not think it sufficient to find values for z
which render the polynomial of less and less
value; it is necessary, besides this, that the luw
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of decrease should necessarily render it zero ;
apd that it should be such that zero is not, so
to speak, the asymptote of the polynomial.

After citing Euler’s proof that
(W) V1=,
in reply to Argand’s assertion that this
expression was irreducible to the form
P +9+V/ —1, heraises two other objections,
which are important and given in full.

Accustomed to designate the position of a
point in a plane by an angle and radius vector,
geometers have certainly not been ignorant of
the conscquences of M. Francais’ definition.
.o But, content with distinguishing
between the magnilude and position of a right
line in a plane, they had not yet formed, from
these two simple ideas, a single complex one,
or rather they had not yet created a new etre
geometrigue, uniting at once both the ideas of
magnitude and position. The length of a
right line and its position, . e. the angle it
makes with a fixed axis, are two quantities,
which we may term homogeneous ; now, how
can they be so combined as to form this new
entity called a dirccted line ? It seems to me
this problem is not yet satisfactorily solved.
If a is the length of the line and a the arc of
the unit circle which measures the avgle it
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makes with a fixed axis, undoubtedly we may
in general represent the line by ¢ (@, «), and
the function ¢ must be determined by the
essential condition it is to satisfy. Thus 1°,
evidently ¢(s,a)=+a must correspond 10 a=o,
e=2x, .. .., a=2nm and #a,0)=—a to a=m,
a=38r,.. .., e=@n+1)mr; 2°, also, evidently
from ¢(a,c)=9¢(3, ) we must have a=b, a=f.
But 8°, does it follow from the proportion

Ha,a c,
#a,0) ‘m), a8 M. Francais says, that we

96,0 ¢ (a,0)
a ¢
must have 3 =— and a—fP=y—62 I do not

see that this necessarily follows from the con-
ception of ¢, The very meaning of this ratio
Z((:;; is quite obscure. What indeed is meant
by doubling, trebling, etc., a directed line ?
A prior{ this is not intelligible. M. Fran-
cais seems to have been aware of this
dificulty, inasmuch as he speaks of the sum
of directed lines only as a consequence of his
first two theorems. 8till, I do not object to
admitting this condition as an essential charac-
teristic of ¢ ; but in ‘that case the complete

definition of adirected line will be a definition-

nomints non ret, or, in other words, directed line
will be the name of a certain analytic function
of the length and direction of a right line.
From this it unfortunately follows that we
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are no longer constructing imaginaries, but
simply reducing them to the same analytic form.
However, let us see what this function is. 1t
is,.in the first place, clear that the expression
J(a, a)=a.ea¥=1gatisfies the three foregoing con

ditions. In fact, we have 1°¢{a,0)=a.e0¥—1=q,
#a,m)=a.e” V- 1—q(cos T+ V——_l_sin7r)=—¢/z;_2o
the equation ¢(a,)=¢(b, %) becomes a.¢** 1=
b.e8Y=1, or, passing to logarithms, equating,
and returning to numbers, a=5, a=/; 8° the
above proportion, by similar transformations

becomes Z-:(; and a—ﬂ:y—d. But is this

form a.ex Y= 1the only one which satisfies these
three conditions? I think not, and it seems to
me evident that they will be equally true if we
substitute an arbitrary coeficient for the imagi-
nary ¥—1. Sothattheforma.es¥~1will, in my
opinion, only be a special case of the analytic
expression for a directed line, in its conven-
tional signification. Are there any other con-
ditions which follow from this signification ¢
To this question no answer is made, nor do1
either sec any.

Again, 4° the table of double argument which
you (Gergonne) propose, as applied 1o a plane
supposed to be so divided into points or infine-
tesimal squares that each square corresponds to
a number which would be its indez, would very
properly indicate the length and position of
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the radii vectores which revolve about the
point or central square corresponding to +0;
and it is quite remarkable that if we designate
thelength of a radius vector by a, and the angle
it makes with the real line . . ., —1, £0,+1,....
by e, the rectangular co-ordinates of its ea-
tremity remote from the origin by a, y, the real
line being the axis of z, the point would be
determined by z+y 4 —1, and consequently,
since # = acosa, y=asin by, a.ca¥=1. Thus
we bave & new geometrical interpretution of
the function «.eaV=1 which, it scems to
me, is of more value than that of MM.
Argand and Francais; but certainly we
should not thereby conclude that this
was a new method of constructing, geo-
metrically, imaginary quantities, for the above
indices presuppose them. However this may
be, it ia clear that your ingenious tabular ar-
rangement of numerical magnitudes may be
regarded as a central slice (tranche centralc) of
a table of triple argument representing points
and lines in tri-dimensional space. You would
doubtless givetoeach term a tri-nomial form;
but what would be the co-efficient of the third
term? For my partIcannottell. Analogy would
seem to indicate that the tri-nominal should
be of the form pcose+gcosfB+rcosy, ¢, 3
and y being tbe angles made by a right line
with three rectangular axes, and that we should
have (pcosa+gcos B+1rcosy) (p’cosa+g'coss
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+7r'cosy)=cos®a+cos®3+cos?y=1. The values
of p,q,7, p',¢’, 7 satisfying this condition would
be absurd; but would they be imaginaries, re-
ducible to the general form A+B ¥ —1¢

On this letter Hamilton remarks in
his Lectures on Quaternions, (Preface,
p- 57), “The six non-reals which thus
Servois with remarkable sagacity fore-
saw, without being able to determine
them, may now be identified with the
then unknown symbols +¢, +j, +4, —4,
—Jj, — & of the quaternion theory ;" and it
may here be interesting to quote (North
British Review, 1866), from a letter of
Hamilton on the discovery of these sym-
bols:

Ocr. 15, '58.

“P. S.—To-morrow will be the fif-
teenth birthday of the Quaternions.
They started into life, or light, full
grown, on the 16th of Oct., 1843, as
I was walking with Lady Hamilton to
Dublin, and came up to Brougham
Bridge, which my boys have since called
the Quaternion Bridge. That is to say,
I then and there felt the galvanic circuit
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of thought to close; and the sparks
which fell from it were the fundamental
equations between.i, j, k,; ewactly such as
I have used them ever since. I pulled
out, on the spot, & pocketbook, which
still exists, and made an entry, on which,
at the very moment, I felt that it might
be worth my while to expend the labor /I
of at least ten (or it might be fifteen)
years to come. But then, it is fair to
say that this was because I felt a problem
to have been at that moment solved—an
intellectual want relieved—which had
haunted me for at least fifteen years be-
fore.  Less than an hour elapsed before
I had asked and obtained leave of the
Council of the Royal Irish Academy, of
which society I was at that time presi-
dent, to read, at the next general meet-
ing, & paper on Quaternions, which I
accordingly did on Nov. 13th, 1843.”

It is also proper here to add a dis-
claimer from Gergonne as to any thought
of the extension of his table to tri-
dimensional space, until after the ap-
pearance of Argand’s and Francais’
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papers; ;and that even then he saw no
way by which to effect that result.

The above letter from M. Servois called
forth a reply from Francais (Annales,
Vol. IV., p. 364-367), and a third paper
from Argand (Annales, Vol. V., p 19‘7—
209). In the former, Francais sustains
Gergonne, who had already said that
Servois asked toomuch of thenew theory,
demanding rigorous demonstrations of
that which, as in the early history of
negative quantities or the calculus, was
perceived by a sort of instinct, the proofs
of whose fundamental principles the
earlier writers were not in a state to
produce. He then adds a few examples
of the facility with which one might pass
from the proposed to the ordinary nota-
tion.

The equation of a triangle whose base coin-
cides with the axis of reference is aa-+b—p=¢,

whence .
a cos a--bcos f=¢, and asin e—? sin B=o,

or, taking the sum and difference of the squares

a®-+-b*-+2ab cos(a+f)=c?,
a*cos2a+ D cos2B+2ab cosfa—fB)=c*.
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The equation of the circle referred to the
center is ap=z+y ¥ —1, whence
acosg=e, asinp=y, 22 +yt=q®,
The equation of a circle referred to a diame-
ter is p¢+ gir—¢=2a, whence
NCo8 ¢+ 5 sin p=2¢, psin¢— g cos p=o,
PE=2Rap cos ¢, ¥ +y*=2ax.
The equation of an ellipse referred to the
focus is pg+(2a—p) yw=2¢, whence
P CO8 ¢+(2a—p)cos W=2Qe,
a?—e2

psino+(2a—pisin Y=o, p= ms—¢.

The reply of Argand is appended.

The new theory of imaginaries, already re-
ferred to several times in this publication, bas
two distinct and independent objects; it seeks,
firat, to render intelligible certain expressions
whose presence in analysishas been inevitable,
but which have not yet been referred to any
known evaluable quantity ; and, second, it
presents a method, or a particular notation
which employs geometric symbols concurrent-
ly with the ordinary algebraic signs. Hence,
from this double point of view, two questions
arise: Has it been rigorously shown that
¥ 1 represents & line perpendicular to those
denoted by +1 and —1? Can the notation of
directed lines furnish, in certain cases, demon-
strations and solutions preferable cither for

>
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their simplicity or brevity, etc., to those which
they are intended to replace?

The first of these will, perhaps, always be
open to discussion so long as we seek to estab-
lish the meaning of 4'—1 by analogy, from
the commonly received ideas on positive and
negative quantities and their ratios. Negative
quantities have been and are still the subject
of discussion; it will, therefore, be all the
easier to raigse objections to the new theory of
imaginaries. But this difficulty will vanish
if, with M. Francais, we define what is meant
by a ratio of magnitude and position betwéen
two lines. Indeed, the relation between two
such lines may be conceived of with all neces-
sary precision. Whether this relation be called
ratio or something else, it may always be
made the subject of exact reasoning, and its
consequences, in analysis and geometry, of
which M. Francais and myself have given
some examples, may be traced. The only re-
maining question, then, is whetherit is proper
to designate this relation as a ratio or propor-
tion, words which already possess, in apalysis,
a determinate and fixed meaning. Now, this
is permissible, because the new meaning is an
extension, not a contradict/on, of the old one.
The latter is so generalized that the ordinary
meaning becomes, 80 to speak, a particular
case of the new one. There is then, no ques-
tion here of demonstration.
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Thus, for the apalyst who first wrote
a—nzal,—‘, this equation was a definition of

Degative exponents, not a proposition proved
or to be proved. All that it was incumbent
upon him to show was that this definition was
only a generalization of that of positive ex-
ponents, the only ones before kmown, and
so for fractional, irrational and imaginary ex-
ponents. It has been said that Euler proved
(¥=1)Y=1=e—%m. The word prored may be
exact if we mean that this equation is
derived from ¥ —1=cosz + 4 — lsinz,
which is readily shown to be the case; but it is
not so as regards this latter; for to show that a
certain cxpression has a definite value, implies
the previous definition of the expression. But
is there any definition of imaginary exponents
antedating the socalled demonstration of
Euler? Itseems not. When Euler suught to
evaluate ez¥—1, he paturally resorted to the
theorem aZ:1+1:f +1z_i+ . . . . previously
demonstrated for all renl values of 2. By mak-
ing z=2 ¥ —1 he found
= V=1 a®
P27 —l=1+—1- ——T:)—— PN

Thence he concluded, not that ¢z ¥~ 1=cosz+
4o/ —1sinz, but that, if the expression ex¥—1
was defined as representing a quantity equal to
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cost+ ' —1sinx, we should thereby bring both
real and imaginary exponents under the same
law. Here again, then, we have the extension
of a principle, not the demonstration of a
theorem.

It is also by an extension of principles that
I was led to regard (4 —1)(¥=1)as representing
aperpendiculartotheplane +1, + ¥—1. The
two results conflict, and I certainly bave not
insisted upon my own; I only wish to observe
that MM. Francais and Servois have attacked
it from considerations which are after all of
the very nature of those on which I relied ‘o
establish it.

But if the above perpendicular cannot be
expressed by (¥ —1)Y—1, how then rhall it be
represented? Or, rather, can apy expression
be found, whose adoption, as the rcpresenta-
tive of the perpendicular, shall bring all di.
rected lines whatever under a common law,
as is already the case fnr‘evcry line of the
plane £1, + ¥=17? This it a question which
must be of interest 1o gcomcters, at least to
those whn admit the new theory. To return
to the original question, T observe that whether
¥"=1 does or does not represent the perpen-
dicular on +1 mustdepend upon the meaning
of the word ratio; for it is agrecd by all that

—_— —_ V=1 -1
+1:4-1::4—=1:—1or that --‘_"_—]--—T.E—I.
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So that M. Servois’ objection to Francais’
proof of his first theorem, viz: ‘‘That it is
not proved that +a ¥ —1 is a mean, as to posi-
tion, between +a and —a’’ is equivalent to the
assertion that the word ratio has no reference
to position. In its usual acceptation, this is
true; and on the other band, it may be said
that, in the conception of a ratio between
quantities with different signs, the signs must
be regarded. In the new meaning, direction
and magnitude make up the idea of ratio. It
is thus seen to be a question of words, decided
by the exact definition given by Francais,
which is an extension of the usual one.

The second point under discussion is more
important. Doubtless no truth is reached by
the notation of directed lines which cannot be
attained by ordinary methods; but which
method is the simplestt This question is, I
think, worthy of examination. It is to the
influence of methods and notations on the
progress of the science, that modern mathe-
matics owes its superiority. So that when
anything new of this kind appears, we may
at least examine it in this respect. Since the
-publication of the new theory, M. Servois
alone bas expressed an opinion on this point,
and his opinion is not favorable to the new
notation. Ana]ytic formule seem to him more
simple and expeditious. 1 would, however,

123

claim for my method a more careful examina-
tion. I admit that it is novel, and that the
mental operations it requires, although quite
simple, demand some familiarity in order that
they may be performed with the ease which
follows practice in the ordinary operations of
Algebra. Some of the theorems I have proved
seem to me easier than the corresponding
purelyanalytic processes. This is, perhaps, an
author’s illusion, and I will not insist upon it:
but I claim with more confidence the superi-
ority of the method of directed lines for the
demonstration of the Algebraic Theorem:
‘“ Every polynomial an+aan—1+

is decomposable intd factors of the ﬁrst or
second degree.” 1 feel it necessary to resume
this demonstration, not only to reply to the
objections of M. Servois, but also to show
more fully how easily it is derived from the
new principles. The importance and difficulty
of this theorem, which has tasked the skill of
the best geometers will, 1 think, excuse, in
the eyes of the reader, some repetition. The
demonstrations previously given may, I be-
lieve, be classified under two heads: Those
of thefirst-class depend on certain metaphy-
gical principles relating to the transforma-
tion of functions, which are doubtless true in
themselves, but which, properly speaking, are
not susceptible of rigorous proof. They are
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a sort of axioms whose truth cannot be appre-
ciated unless we already grasp the spirit of
Algebraic analysis : whereas to admit the truth
of a theorem, it is sufficient to know the prin-
ciples of this analysis; that is, to understand
its definitions and language. Hence demon-
strations of this kind have been frequently at-
tacked. The Recews!, in which these remarks
appear, offers several examples, and the ap-
pearance ot such discussions is an indication
of the fact that such reasoning is not ahove
reproach.

In other cases the proposition to be estab-
lished is approached directly, by showing that
there is always at least’ one quantity of the
form a4-b+¥—1, which, when substituted for
#, renders the polynomial zero ; that is to say

that this polynomial may always be resolved ;

y

into factors of the first or second degree. This
is the method of Lagrange. ‘This great geom-
eter has shown that the previous methods of
d’Alembert, Euler, Foncenex, etc., are inade-
quate (Résolution des equations numériques.
Notes IX. and X). Some of them resorted to
series, others to auxiliary equations; but they
did not prove, as they should have done, that
the co-efficients of these series and equations
were always real. These geometers admitim-
plicitly the principle that ‘“if a problem
involving an unknown quantity can be re-
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solved in # ways, it must lead to an equation
of the nth degree.” Lagrange himself regards
this legitimate, although he does not use it in
the above-cited demonstrations. Now, may
it not be said that this principle, probably true
as it is, is not demonstrated, and belongs to
that class of axioms above referred to? Es-
pecially would it seem as if this principle,
which in theory is among the first to be dem-
onstrated, was out of place, dependent as it
isupon no little familiarity with the practice
of the science. This remark is not a mere
quibble, which, as regards conceptions de-
serving the respect of all geometers, would be
as out of place as it i3 useless, but is made sim-
ply to show the difficulty in the way of a satis-
tory treatment of this subject.

It would appear from the above that a de-
monstration at once simple, direct and rigor-
ous is worthy the attention of geometers. I
shall, thercfore, resume that of my previous
paper; but, to avoid all ambiguity, shall free
it from any copsideration of vanisbing quan-
tities. It will be convenient to restate briefly
the first principles of the theory of directed
lines.

Having taken KA as the direction of positive
quantitics, the opposite direction AK, will be,
as usual, that of negative quantities. Drawing
the perpendicular BKD through K, one of the
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directions KB, KD, the former say, will corre-
spond to imaginaries of the form -+a #—1, the
latter to those of the form —a 1. 'The line
drawn above the letters indicates that direction
is considered, and, when we are only concerned
with length, is suppressed. Assuming arbi-
-trarily the points F ,G, H, . . . . , P, Q, we
have FG+GH+ . . . +PQ=FQ. This is the
law of addition. If, between four lines, there
exists the relation é—l};:%, and, in addition,
‘the angle between AB, CTD is equal to that
-between EF, GH, these lines are said to be in
proportion. Hence the law of multiplication;
-for a product is merely a fourth term in a pro-
-portion whose first term is unity.

It is to be observed that these two rules are
independent of any opinion one may have on
the new theory. If itis desirable that Y—1,
& symbol to which the practice of Algebra
continually gives rise, and which, sometimes
called absurd, has yet never given absurd re-

- sults, if it iy desirable I repest that this symbol
should remain meaningless, while still not be-
ing zero, this will give rise 1o no difficulty.
Directed lines will only be the symdbols of num-
bers of the form @ +b ¥—1. The above

-rules will be none the less true, but in-
stead of deducing them « priori  from
purely metaphysical considerstions, the
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first will depend on a simple construction.
The second will be an immed:ate conseqguence
of the formulg sin {a-4-b)=sin a cos b+ e
and thercfore the use of these rules may give
demonstrations entirely satisfactory.
Directed lines will then be symbols of the
numbers a+b ¥—1. Like them they are sus-
ceptible of 1ncrease, decrease, multiplication,
division, etc.; they will, as it were, corresl.)ond
throughout, function for function, and, in a
word, 7epresent them completely. HEP?e,
from this point of view, concrete quantities
will represent abstract numbers; but con-
versely abstract numbers cannot represent
concrete quantities. In what f.olh.)ws, the
accente and subscripts are used to indicate .the
absolute magnpitude of the quantities to which
they are affixed; thus, if a=m-4n Y1,
m aod n being real, it is understood that
a, or a’= ¥Ym®*Fn?. Let then
yz.—_:cn+a.z:n—l+bam-2+ ... . +fr+g
be the proposed polynomial, n being a whole
pumber; ¢, 6, . . . . f, g may be of the
form m+n¥—1. We are to prove that we
may always find a quantity such that, substi-
tuted for z, y,=o. The polynomial may lée ‘
constructed for any value of z 13y. the preceI;
ing rules. Taking K as the mma.l. point,
as the final one, KP will express this polyno-
mial, and it is to be shown that @ may be 8o
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determined as to cause P to coincide with K.
Now, if among all the possible valies of a,
there is no one of which thig is true, the line
KP cannot become null; and of all the values
of KP there will necessarily be one smaller
than the rest. Designate this minimum value
of 2 by 2, then ¥'(z+i) <¥'z cannot be true,
whatever the value of 7. Now, developing,
we have

Yet+ny=yz +
[(nen=lt(n—Dyazn—24 . .. +p)is
(A) ‘3 n n—1

WA S

FI)

< L
+{nz+a)yin—14gn,
As the co-eficients of the several powers of

¢ may become zcro, and this is a special cace,
it is better to replace the above equation by

B) yz+i=y: +Rr +818 4. . . 4 Vivrgn,

and so make the solution general; R, Sand vV
not being zero and the exponents 7, Y.L, TR
being increasing. Observe that if all the coeffi-
cients of (A) were zero, the equation would
reduce to ¥ 44y = gz + in. Making then
="4_y;, we shall have Y+i;=0, and the
theorem would be established for this case,
which in what follows may therefore be set
aside. We shall then suppose that the second
member of (B) has at least three terms. With
this premise, construct gz, taking KP:= y,,
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PA=Re, AB=8p», . .. .,_F_G:Viv:'Gﬂzil';:
we shall havey’z =KP,R%,” =PA, Sz,"* =AB,
.., Vi =FG, i,»=GH; for evidently,

in general, p'¢'=(pgy.

Yet) will be represented by the broken or
straight line

. KPAB. . FGlL, or by KH;

and it is to be proved that we have KH <KP.

Now the quantity 2 may vary in two ways:

1°, In direction; and it is clear that if it
varies by an angle q, its power ¢r will vary .by
ap angle 7¢. Let then a be the angle by which
PA—=Riris greater than KP=y.. If {is made

to vary by the angle ~—, PA will vary by the
p

angle #—a; that is, the direction of PA wxll}
become opposite to that of KP;. so that the
point A will be found on the line PK, pro-
longed, if necessary, tbrough K. g
2°. The direction of ¢ being supp‘osed ﬁxe.,
we may, in the second place, cause it to var'y(;l
magnitude; and first, if PA>KP, w.e may 1
minish ¢ till PA<KP, so that A w.lll fall b(..-
tween K and P.  Then, if the magmtud?‘of 7,
o diminished, is not such that R’¢,~ >87%,8 +
. . +V'ér +4,7, We may, b.y
éimit{is}\ing it still further, make this inequali-
ty true, for the exponents s,'. cee 2, ln ar.e
all greater than 7. Now this inequality is
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equivalent to PA> AB+ . . . 4-FG4+GH;
therefore the distance AH will be less than
PA, and, consequently, if we describe a circle
with A as a center and radius AP, the point
H will lie within this circle, and it follows
from elementary geometry, that K being on
the prolongation of the radius PA, in the di-
rection of the center A, we shall have KH<
KP.

To follow this demonstration, I would ack
the reader to make the diagram. By the appli-
cation thereto of the above cited simple funda-
mental principles, it will be seen that, with
the exception of the development (A) which
is algebraic, the remainder of the demonstra-
tion is made, as it were, at sight, without any
mental effort.

It is almost superfluous to dwell upon an
objection which might be made to what pre-
cedes, namely, that if oneundertook to dimin-
ish the value of z by the method prescribed
for diminishing ¥z, one might never succeed,
because the value of ¢, in the successive sub-
stitutions, might diminish by constantly de-
creasing quantities. Indeed, the contrary is
not proved ; but from this it only follows that
the above considerations cannot furnish, at
least without new developments, an approxi-
mative method, and this does not in the least in-

validate the demonstratipn of the theorem.
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M. Servois’ objection is easily answered. ‘It
seems to me,” he says, ‘“that it is not enough
to find values of « which render the poly-
nomial constantly less ; it is necessary, in ad-
dition, tbat the law of diminution should
necessarily reduce the polynomial to zero, or,
if I may use the expression, such that zero is
not the asymptote of the polynomial.” It has
been proved that we may not only find for
y’, constantly diminishing values, but a
value less than any assignable one. If the
polynomial cannot be reduced to zero, its
least value will thep be other than zero, and
in this case also the demoustration holds good.
The close of M. Servois’ sentence would seem
to indicate that he makes a distinetion between
an infinitely small limit and onc which is abso-
lutely zero. If such was his meaning he
might be answered in the words of M G.er-
gonne . . . . Doubtless M. Servois’ difti-
culty ariees from the equation of the hyper-

bola y= —:—;— It is unquestionably true that in

this equation, although we may assign toy a
value less than any assignable one, ¥ cannot
become zero unless 2 is supposed infinite. But
this is not the case in our demonstration; for
certainly it is not an infinitc value for # which
will render the polynomial 'z zero,

Let us now resume the question which has
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given rise to the above explanations. It may
be agked if it is possible to transiate what pre-
cedes into the ordinary language of analysis.
It seems to me quite probable, although it may
be difficult in this way to obtain so simple &
-result. To effect this it would seem necessary
to assimilate the notation of imaginaries to
that of directed lines, writing, for instance:

R Y b -
v et v /)
fora+dv—1;

Ya?+4-6® might be called the modulus of
.a+b¥_1, and would represent the absolute
length of the line a+b ¥ =1, while the other
factor, whose modulus is unity would denote
its direction. We should only prove 1° that
the moduius of the sum of several quantities is not
-greater than the sum of their moduli, which is
equivalent to saying that the line AF is not
-greater than the sum of the lines AB,BC,. . ..
EF; 2° that the modulus of the product of several
quantities 78 equal to the product of their moduls.

The further investigation of the relations
between the notations I must leave to those
more skillful than myself. If this attempt to
"obtain a purely analytic demonstration as sim-
ple as that derived from the new theory is
successful, analysis will ‘be the gainer in thus
reaching, by an easy method, a result whose
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difficulties were not unworthy the notice of
Lagrange himself. 1f, on the contrary, this
attempt should prove unsuccessful, the nota-
tion of directed lines will retain an evident
advantage over the ordinary one; and in either
cese the new theory will have rendered some
small service to science.

Io closing, I may be permitted to make a re-
mark on & note from M. Lacroix (Annales, Vol.
1V, p. 867). Thislearned professorsays that the
Philosophical Transactions of 1806 contain a
memoir from M. Buée on the very subject of
which M. Francais and myself have written.
Now, it was in this same year that my essay
appeared, & pamphlet in which I explained the
principles of the new theory, and of which
the paper inserted in Vol. IV of the Annales
(p. 138)is but an extract; it is well known,
too, that the publications of #¥tademies can
appear oniy after the date which they be.':ar.
This is sufficient to prove that if the contribu-
tion of M. Buée was wholly his own, as is
quite possible, it is also quite certain that I
could have had no knowledge of his paper
when my treatise appeared.

In the foot notes to the Preface of
Hamilton’s Lectures on Quaternions, the
reader will find full references to the
labors of other writers on this subjeet,
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including Warren (1828), Peacock, Ohm,
Mourey (1828), Gauss, Bule (1806),
Gompertz (1818), Carnot, Wallis (1685),
MacCullagh, Argand, Francais, Servois,
Grassmann, DeMorgan, Graves, De-
Foncenex, Euler, ete.  While giving full
credit to the results of his predecessors
and co-workers, Hamilton justly claims
to be alone the founder of a systen:.
Moreover, the fundamental conception of
this system was radically different from
thosc entertained by previous writers.
In the latter inclined or perpendicular
lines to the plus and minus axis were
represented by imaginaries, whereas all
unit lines in space are represented by
Hamilton by distinet square roots of
negative unity, they being all real. No
one direction is assumed positive, nor is
any system of reference chosen inde-
pendent of the lines of the construction
involved in any special problem.

In addition to the works of Hamilton,
Tait and Kelland, may be especially men-
tioned the Culcolo dei Quaternivni, Bel-
lavitis, Modena, 1858, and the original
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paper (Memoirs of the Italian Society,
1854), by the same author, which has
also been translated from the Italianinto
French by Laisant (FEuaposition de ld
Méthode des Equipollences. Paris,
1874); the Zhéorie KElementaire des
Quantités Complexes, by Hoiiel, Paris,
1874 ; the Fonctions doublement périod-
iques, of MM. Briotand Bouquet, and a
treatise by Allegret, Sur le Caleul des
Quaternions de M. Hamilton. Paris,
1862.

As possessing some historic interest
may be added, in addition to the works
cited in the above-mentioned Preface,
Truel, 1786, referred to by Cauchy,
Woodhouse (Phil. Trans. 1801), Khun,
(Nouveaux Mémoires de Petersburg, Vol.
3), and Le Calcul Directif, a series of
articles by Transom, in the Nowwelles
Annales de Mathématiques, 1868,

' A. S. Harpy.



